By Akira MORI

Let F be an open Riemann surface. A "subsurface" G of F means a connected open set G on F whose boundary set C consists of a finite or infinite number of compact or non-compact simple continuous curves clustering nowhere on F. Further it is assumed that the closure G + C of G has the same boundary set C as G. C is the "relative boundary" of G.

Let HB, HD and HBD denote the classes of single-valued harmonic functions in a region, which are respectively bounded, have a fimite Dirichlet integral or have both of these properties.

A surface F is said to belong to the class 0_{HD} if every function u(p) ϵ HD on F reduces to a constant ([1]). The classes 0_{HB} and 0_{HBD} are defined similarly. It is known that $0_{HB} < 0_{HD} = 0_{HBD}$ ([6], [7]).

By analogy we shall denote by SO_{HD} the <u>class of subsurfaces</u> G with the relative boundary C, such that every function u(p) continuous on G + C, =0 on C and \in HD in G vanishes identically. Two subsurfaces G and G^{*} (of two surfaces F and F^{*} respectively) are identified when there exists a one-to-one and conformal transfornation between G and G^{*} which is one-to-one and bicontinuous also on the closures of G and G^{*}. The classes SO_{HB} and SO_{HED} are defined sirilarly, and again there holds SO_{HE} \leq SO_{HED} = SO_{HED} ([4]).

Let $\{F_n\}_{n=0,1,\cdots}$ be an exhaustion of F, and Γ_n be the boundary of F_n . Let $\omega_n(p, G)$ denote the harmonic measure of $G \cdot \Gamma_n$ with respect to $G \cdot F_n$, and put $\omega(p, G) =$ $\lim \omega_n(p, G)$. It is immediately proved that $G \in SC_{HB}$ and $\omega(p,$ $G) \equiv 0$ are equivalent. Further, if $\omega(p, G) \neq 0$ then sup $\omega(p,$ G) = 1. (Cf. [4], [5] and [6].)

Let G. G' be a pair of disjoint subsurfaces of F. It is known that, ii both G and G' are not of class SO_{HD}, then F **¢** O_{HD} ([3], [4]). In this note we shall prove:

	Theorem.	If G	ŧ	SOHD	and
G!	¢ SOHB,	then F	¢	OHD	•

Remark. Whether the inclusion $0_{HB} < 0_{HD}$ be proper or not remains still unknown. As for the classes of subsurfaces, however, the following example shows that SOHE is a proper subclass of SOHE .

Let E be a closed set of points on the real axis of the complex z-plane, F be its complement and G be the upper half-plane $\exists z > 0$. The relative boundary C of G is the real axis deleted in E. Suppose that G \notin SO_{HB} and u(z) \in HB in G, =0 on C and $\equiv 0$. By the principle of reflection u(z) and its conjugate function v(z) can be harmonically continued across C to functions defined and single-valued in F, so that $f(z) = \exp$. (u(z) + iv(z)) is a non-constant bounded analytic function in F. Conversely, if f(z) is non-constant, bounded and analytic in F, decompose f(z) into

> $f(z) = f_1(z) + if_2(z),$ $f_1(z) = (f(z) + \overline{f(\overline{z})})/2,$ $f_2(z) = (f(z) - \overline{f(\overline{z})})/2i.$

Then, $\Im f_1(z)$ and $\Im f_2(z)$ are of class HB in G and =0 on C, and at least one of these two is $\equiv 0$, so that G \blacklozenge SO_{HB}. A similar reasoning holds also for the class HD, and we have: $G \in SO_{HB}$ or $\leq SO_{HD}$ if and only if $E \in N_{\infty}$ or $\in N_{\Theta}$ respectively in Ahlfors-Beurling's [2] sense (i.e. $F \in O_{AB}$ or $\in O_{AD}$ in the sense of [1]). On the other hand, it is shown in [2] that there exist linear point-sets belonging to N_{Θ} but not to N_{∞} . Hence, the inclusion SO_{HB} \subset SO_{HD} is proper.