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The following theorem on num-
bers of positive sums of inde-
pendent random variables has been
proved by P.Erdos and M.Kac.
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which are introduced by K.Kunisawa,
and he called typical function
and mean concentration function
of H(Λ; β In our proof of the
theorem, the following Kunisawa* s
fundamental unequality^ are used.

Lemma 1. For any -& ><?

where J7
Λ

iany distribution
are

Lemma' 2, Let o( be a positive
( 0<<uί£ ,o<λ</ ) and let

/Tap bo a distribution function
satisfytin^

F<-*;,

then we have

where Kfa.λJ la a positive con-
stant depending on J and λ

Lemma 3, Under the sane assump-
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