By Hiraku TOYAMA

In his theory of communication, C.E.Shannon ${ }^{(1)}$ determined the channel capacity oi a disrete noiseless system by means of a determinant equation of the following type:

$$
|E-A(z)|=0,
$$

where $\dot{A}(Z)$ is a square matrix dependent on a complex variable z。

In this note I will prove the existence of a real positive root of the smallest absolute value, which is assumed in Shannon's theory.

Theorem.
Let $A(z)$ be a matrix subject to the iollowing conditions:
(1) $A(z)$ is a square matrix of order n.
(2) Every matrix element $A_{i k}(z)$ of $A(z)$ is an entire function of z
$A_{i k}(z)=\sum_{m=0}^{\infty} A_{i k, m} z^{m}$ and

$$
A_{i k}(0)=0
$$

(3) Every coel'ficient ${ }^{\circ} A$, k.m of $A_{i k}(z)$ is non-nogative

$$
A_{i k, m} \geqq 0
$$

(4) At least one coefficient of the characteristic polynomial $|\lambda E-A(z)|$ is not constant. .

Then the determinant equation

$$
|E-A(z)|=0
$$

has a real positive root of the smallest ${ }^{(2)}$ absolute value.

Lemma 1. It all or the traces $\operatorname{Tr}(A(z)), \operatorname{Tr}\left(A^{2}(z)\right) \cdots \quad \operatorname{Tr}\left(A^{n}(z)\right) \circ I^{\prime}$

$$
\begin{aligned}
& A_{n}^{n}(z) \text { are constant, then the } \\
& \text { characteristic polynominl has con- } \\
& \text { stant coefficients. } \\
& \text { Prooi. Let } \lambda_{1}, \lambda_{2} \cdots \cdots \lambda_{n} \text { be } \\
& \text { eigenvalues of } A(z) \text { then } \\
& \operatorname{Tr}(A(z))=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\text { const } \\
& \operatorname{Tr}_{r}\left(A^{2}(z)\right)=\lambda_{1}^{2}+\lambda_{2}^{2}+\cdots+\lambda_{n}^{2}=\text { const } \\
& \cdots \cdots+\cdots \\
& \\
& \operatorname{Tr}\left(A^{n}(2)\right)=\lambda_{1}^{n}+\lambda_{2}^{n}+t_{n}^{n}=\text { const } \\
& \text { From these equations follows } \\
& \lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\text { const } \\
& \lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\cdots+\lambda_{n-1} \lambda_{n}=\text { const. }
\end{aligned}
$$

$$
\lambda_{1} \lambda_{2} \lambda_{3} \cdots \lambda_{n}=\operatorname{con} 2 t
$$

by the theorem of symmetric functions.

Leerma 2. The matrix $(E-A(z))^{-1}$ is not an entire tunction.
one $\underset{\operatorname{Proot}}{\operatorname{Tr}\left(A^{k}(z)\right)}$ Lemma 1 , at loast stant for $1 \leqq k \leqq n$.

Hence at least one diagonal element of $A^{k}(z)$ is not all constant.

$$
A_{j j}^{k}(Z)=\sum_{m=0}^{\infty} A_{j j^{\prime} m}^{k} Z^{m}
$$

Let $A_{j j, p}^{k}$ be a non-zero coetficient of the smallest order in the above expansion. Because all the coeriricients is non-nesative, the rollowing inequality holds:

$$
A_{j j, s p}^{k s} \geqq\left(A_{j j, p}^{k}\right)^{s}
$$

In the expansion

$$
\sum_{l=0}^{\infty} A(z)^{\ell}
$$

