1. Let Ω be a compact n dimensional analytic manilold without torsion. We consider a following system of differential equations,

$$
\text { (1) }\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=X_{1}\left(x_{1}, \cdots, x_{n}\right) \\
\cdots \cdots \\
\frac{d x_{n}}{d t}=X_{n}\left(x_{1}, \cdots, x_{n}\right)
\end{array}\right.
$$

where $x_{1}, \ldots . x_{n}$ are analytic
local coordinates and x, ,...,
x_{n} are one-valued real holomorphic functions in Ω. General solutions of this system can be written down in the following form,

$$
x_{1}=f_{1}\left(x_{10}, \cdots, x_{n 0}, t\right), \quad \imath=1, \cdots, n,
$$

where

$$
x_{i 0}=f_{2}\left(x_{10}, \cdots, x_{n 0}, 0\right), i=1, \cdots, n,
$$

and f_{2} 's are analytic functions with respect to their arguments.

If we define a transtormation S_{t} by

$$
\begin{aligned}
& P=S_{t} P_{0}, \\
& P=\left(x_{1}, \cdots, x_{n}\right), \quad P_{0}=\left(x_{11}, \cdots, x_{n 0}\right), \\
& x_{i}=f_{i}\left(x_{10}, \cdots, x_{n 0}, t\right), \quad i=1, \cdots, n,
\end{aligned}
$$

the totality of such transformations forms a one-parameter group. Hence cifierential equations (l) can be regarded as detining a one-parameter stationary ilow S_{t} in Ω 。

We suppose that (1) admits $n-1$ linearly independent (with respect to numerical coefficients) invariant Pfaffian forms (in the sense of E.Cartan) ${ }^{(1)}$
(2) $\omega_{2}=\sum_{k=1}^{n} A_{i k}\left(x_{1}, \cdots, x_{n}\right) d x_{k}$,

$$
i=1, \cdots, n-1 \text {, }
$$

where $A_{i k}$'s are one-valued real holomorphic functions in Ω Then we have
(3) $\sum_{k=1}^{n} A_{1 k} X_{k} \equiv 0, \quad l=1, \cdots, n-1^{(2)}$

Moreover we assume that W_{2} 's
are exact, $1 . e$.

$$
d w_{i}=0, \quad i=1, \cdots, n-1,
$$

or, in other words,

$$
\begin{aligned}
& \text { (4) } \quad \frac{\partial A_{i k}}{\partial x_{j}}=\frac{\partial A_{i j}}{\partial x_{k}}, \\
& i=1, \cdots, n-1, \quad, k=1, \cdots, n
\end{aligned}
$$

Under these assumptions, we want to study the behavior O1 the trajectories of (1). Our main result is the Theorem 3 of § 5 which states the necessary and sufficient condition for every trajectory of (l) to be everywhere dense in Ω. Then we apply this result to the flow in n-dimensional toroid and establish a sufficient condition for the ergodicity of S_{t} 。
2. Let p be a one-dimensional Betti number of Ω, and Γ_{1}, Γ_{2}, \ldots, Γ_{p} be its independent cycles. We put

$$
\begin{aligned}
& \int_{\Gamma_{k}} \pi_{i}=\omega_{i k}, \\
& i=1, \cdots, n-1, \quad k=1, \cdots, p
\end{aligned}
$$

Since ω_{2} 's are exact, we can find $n-1$ holomorphic functions
u_{1}, \ldots, u_{n-1} such that

$$
d u_{i}=w_{i}, \quad i=1, \cdots, n-1
$$

According to the relation (3),

$$
\frac{d u_{2}}{d t}=0, \quad 2=1, \cdots, n-1
$$

Hence u_{2} 's are integrals of (1) and the trajectory of (1) is generally given as an intersection of
$n-1$ hypersurfaces

$$
d u_{1}=0, \quad \cdots, \quad d u_{n_{-1}}=0
$$

u_{2} 's are, in generai, not onevalued since they are additive functions with $\omega_{21}, \ldots, \omega_{i p}$ as fundamental periods.

We first prove the following
1HEOREM 1. If there exist $n-1$ real numbers $\lambda_{1}, \ldots, \lambda_{n-1}$, not simultaneously zero, such

