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l Let Ω be a compact ΎL -
dimensional analytic maniiold
without torsion. We consider a
following system of differential
equations,
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phic functions in Ω, General
solutions of this system can be
written down in the following form,
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Under these assumptions, we
want to study the behavior of the
trajectories of (1) Our main
result is the Theorem 3 of § 5
which states the necessary and
sufficient condition for every
trajectory of (1) to be everywhere
dense in β * Then we apply this
result to the flow in n -dimen-
sional toroid and establish a
sufficient condition for trie ergo-
dicity of .S

t

2, Let f> be a one-dlinensional
Betti number of £2 , and f~l , Γ

z y

.. , Γp be its independent
cycleso We put

Since Όr
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s are exact, we can

find n-/ holomorphic functions
w, , ..., u

n w
 such that

the totality of such transforma-
tions forms a one-parameter group.
Hence differential equations (1)
can be regarded as defining a
one-parameter stationary flow -S"t
in ςi

We suppose that (1) admits n-ί
linearly independent (with respect
to numerical coefficients) inva-
riant Pfaffian forms (in the sense
or F«Cartan)
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According to the relation (3),

Hence u
ι
 fa are integrals of (1)

and the trajectory of fl) is gene-
rally given as an intersection of
ΎI-\ hypersurfaces
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where Aik
 f

s are one-valued real
holomorphic functions in £2 ,
Then we have
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valued since they are additive
functions with <^>
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as fundamental periods*

We first prove the following

THEOREM 1. If there exist n-- (
real numbers λ, , ...,

 λ
n-

(
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not simultaneously zero, such


