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obeys the strong law of large num-
bers.

Sufficient conditions for the
vality of the strong law of large
numbers were given by various au-
thors o Recently H.D Brunk^has
given the extension of the Kolmo-
goroff's sufficient condition (
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when each random variable X*, have
higher moments than the second
order and has proved that:
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More generally he has shown the
following theorem.

Let 1\>YK) be_ a_ sequence of posi-
tive constants, increasing txp in-
finity such that
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for some positive constant R,
then if

converges for some positive integer

V
 tneH

and suppose that for any £ > o

00

fc-i *
Then the sequence -ί XnV obeys the
strong law of large numbers.

We restate the theorem, in which
<fy does not need to be an integer.
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Proof of Theorem 1. Let

Then by Lemma 1, it is sufficient
to prove

oo

fc=M
 2

If we put % = 2.O, , then Λ, ̂ 1
By a theorem of Marcinkiewicz and
Zygmund i
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where /̂  TΛabsolute constant which
depends only on ^- ,

By Holder s inequality

Thus Tcheby ohθfί Inequality shows
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converges to zero with probability

We shall give simple proofs and
slight generalizations of these
theorems appealing to an inequality
theorem of Marcinkiewicz and Zyg-
mund (*)(*•) and to a theorem due to one
of the authorsC
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)which is quoted as:
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