ON THE STRONG LAW OF LARGE NUMBERS
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Let X, , X2 s seoy X 5 oo
be a sequence of independent random
variables and let the mean of Xn ,

E(XW)=0 , n=1,2,..+. If
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converges to zero with probability
1, we say that the sequence { X}
obeys the strong law of large num-
bers.
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Suft'icient conditions for the
vality of the strong law of large
numbers were given by various au-
thors. Recently H.D.Brunkhas
glven the extension of the Kolmo-
goroff's sufficient condition (®)
when each random variable Xy, have
higher moments than the second
order and hes proved that:
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converges for some positive integer
v , then the sequence {X,} obeys
the strong law, where
bRV = E(X¥). neti2,.---
More generally he has shown the
following thecrem,

Let {pn} be a sequence of posi-

tive constants, increasing to in-
fInTty such that

3 k/m';mf(Pnﬂ—P“-)=k>°,
n-> co

Eﬂ“’" PIN-I/P-‘<K) (n=1,2;--~‘§

for some positive constant R ,
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converges Ior some positive integer
qr » then

(n=1,2,-...-)

Sn - X+ XL"""*'XN

6 =
) P"' Pn
converges to zero with probability
1.

We shall give simple proofs and
slight generalizations of these
theorems appealing to an inequality
theorem of Marcinkiewicz and Zyg-
mund ()(*) and to a theorem due to one
of the authors(5)which is quoted as:

Lemma 1. For any positive & ,
let
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Then the sequence { Xa} obeys the

strong law of large numbers.

We restate the theorem, in which
qr does not need to be an integer.

E(X.) =0 (n=1,2.)

Theorem 1. If
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converges for some real q, ,{ =2,
then the sequence {Xw} obeys the
strong law of large numbers, where

b= E(1Xnal¥),n=t,2500. «
Proof of Theorem 1. Let
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Then by Lemma 1, it 1is sufficient
to prove

> SrlE)<aoo, for anyy 20,
k=1 2
If we put ¢ =2n , then ~ 21 .

By a theorem of Marcinkiewicz and
Zygmund (3);
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is an
where AqYabsolute constant which
depends only on qr .

By Holder's inequality
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Thus Tcheby cheff inequality shows
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