By Noboru ITO

(Communicated by H. Toyama)

In the present note, we study some properties of a finite group whose lattice of subgroups is lower semi-modular. We, however, use no result of the general theory of lattices.

I give my hearty thanks to Mr. M.SUZUKI for his kind remarks and advices.

NOTATIONS: $S_{i}(X) = S_{p}(X), H_{i}(X) = H_{p}(X), C(X), C_{\infty}(X), \Theta(X)$ and $\underline{\Phi}(X)$ denote a p_{i} -Sylow subgroup, a p_{i} -Sylow complement, the centre, the hypercentre, the commutator subgroup and $\underline{\Phi}$ -subgroup of a group X respectively; (X) may be often omitted. T(Y(X) denotes the normalizer of a subgroup X in a group Y.

1. On the P-nilpotency.

DEFINITION 1. A finite group is called P-nilpotent when it has a normal P-Sylow complement.

PROPOSITION 1. Let G_T be a group whose order has at least three distinct prime lactors and let P be one of them. Then G_T is P-nilpotent if every proper subgroup of G is so.

PROOF. Let G be a group which satisfies our condition. If G is not P-normal in GRUN's sense⁽¹⁾, there exist a P-subgroup P and a P-regular element A in G such that A induces a non-identical automorphism into P, by virtue of a theorem of W.BURNSIDE⁽²⁾. Since $P \cdot \{A\}$ is non-P-nilpotent, we have $G = P \cdot \{A\}$. Let $A = A_1A_2 \cdots A_r$ be the Sylow decomposition of A. Then $r \ge 2$ by our condition. Clearly $G_1 \neq P \cdot \{A\}$, whence $P \cdot \{A_i\} =$ $P \cdot \{A_i\}$ a Therefore $G = P \cdot \{A\}$ which is a contradiction. Hence G is P-normal. Now by a theorem of O.GRÜN⁽³⁾,

 $S_{\mathfrak{p}}(\mathfrak{G}/\mathfrak{O}(\mathfrak{G})) \cong S_{\mathfrak{p}}(\mathfrak{N}(C(S_{\mathfrak{p}}))/\mathfrak{O}(\mathfrak{N}(C(S_{\mathfrak{p}}))))$

If $G \neq \Re(C(S_P))$, since the latter is p-nilpotent by our condition, $S_P(\Re(C(S_P))/\theta(\Re(C(S_P)))) \neq e$ whence $S_P(G/\theta(\Phi)) \neq e$. Therefore, $G_{\mp} \neq 0(4)$ whence it is easily verified that G is P-nilpotent. If $G = \mathcal{N}(\mathcal{C}(S_P))$ and $S_P \neq \mathcal{C}(S_P)$, then induction argument can be applied to $G/\mathcal{C}(S_P)$ and we can see that $G/\mathcal{C}(S_P)$ is P-nilpotent whence it is easily verified that G is P-nilpotent. Finally if $G = \mathcal{N}(\mathcal{C}(S_P))$ and $S_P = \mathcal{C}(S_P)$, then there exists, by a theorem of I.SCHUR⁽⁴⁾, one H_P in G . Since $G \neq S_PS_G(H_P)$, by our condition, $S_P \cdot S_g(H_P) = S_P \cdot S_G(H_P)$ mence $G = S_P \times H_P$. Therefore, of course, G is Pnilpotent.

PROPOSITION 2. Let G be a non-p-nilpotent group whose every proper subgroup is p-nilpotent. Then $G_1 = S_p \cdot S_1$ where S_p is normal, $S_1 = \{Q\}$ is cyclic, non-normal. And every proper subgroup of G is nilpotent. In particular it is soluble. The converse is also valid.

PROOF. Let G be a group which satisfies our condition. Follow the proof of PROPOSITION 1. First it is evident that the order of is $p^m q^n$ by PROPOSITION 1. Therefore if G is not P-normal, then $A=A_I$, using the same notations as in the proof of PROPOSITION 1, and this proves PROPOSITION 2. Now assume that G is P-normal. Then $\mathcal{N}(C(S_P))=G_T$, since if $\mathcal{N}(C(S_P))\neq G_T$, G is P-nilpotent, as is easily seen by virtue of the proof of PRO-POSITION 1. If $C(S_P) \neq S_P$, induction can be applied to $G/C(S_P)$ and we can easily prove PROPOSITION 2. Finally if $C(S_P) = S_P$, then $G=S_P \cdot S_T$ and $S_P U$, $S_P \cdot T = S_P \times T$ and $S_P \cdot U = S_P \times U$ whence $G=S_P \cdot S_T$ which is a contradiction. Therefore S_1 is cyclic and this proves PROPOSITION 2. The converse is obvious.

REMARK 1. Similar results as PROPOSITION 1 and 2 have been obtained by many authors, for instance, 0.SCHMIDT⁽⁵⁾, D.KOLIANKOWSKY⁽⁶⁾, S.TCHOUNIKHIN⁽⁷⁾ and K.IWASAWA⁽³⁾. And our result is a slight modifi-