ON A MEROMORPHIC FUNCTION IN THE UNIT CIRCLE WHOSE NEVANLINNA'S

CHARACTERISTIC FUNCTION IS BOUNDED

By Kihachiro ARIMA

(Communicated by Y. Komatu)

Let E be a Borel set on the unit circle |Z|=1 and let its capacity be positive. Then there exists a mass distribution $\mu(\alpha)$ on E so that

$$u(z) = \int \frac{\log \frac{1}{|z-a|} \, d\mu(a)}{E}$$

is harmonic and bounded in the unit circle;

1 u (2) | < K

We suppose that $\int (Z)$ is a meromorphic function in the unit circle and its characteristic function T(x,f)is bounded. Let a_i be a pole of order $\mathfrak{M}(a_i)$. Applying Green's formula to $\log(1 + |f(z)|^2)$ and $\mathfrak{U}(z)$, we have $4 \int_0^x \int_0^{2\pi} \mathfrak{U}(z) \frac{|f'(z)|^2}{(1 + |f(z)|^2)^2} r dr d\theta$ $= r \int_0^{2\pi} \log(1 + |f(z)|^2) d\theta + 4\pi \sum_{|a_i| < x} \mathfrak{U}(a_i) \mathfrak{m}(a_i),$ $|a_i| < x$ where $Z = r e^{i\theta}$. Dividing by $4\pi r$ and then integrating, we have $\frac{1}{\pi} \left[\int_0^{2\pi} \frac{1}{2} r dr \left[\int_0^x \int_0^{2\pi} \frac{1}{(1 + |f(z)|^2)^2} r dr d\theta\right]$ $= \frac{1}{4\pi} \int_0^{2\pi} \log(1 + |f(z)|^2) \mathfrak{U}(z) d\theta - \frac{2}{4\pi} \int_0^{\pi} \frac{dr}{T} \int_0^{2\pi} \log(1 + |f(z)|^2) \frac{\vartheta\mathfrak{U}(z)}{ir} de$ $+ \int_0^x \frac{1}{T} \left[\int_{|a_i| < x}^{2\pi} \frac{1}{(1 + |f(z)|^2)^2} r dr d\theta\right]$ $= \frac{1}{4\pi} \int_0^x \frac{dr}{T} \left[\int_0^x \int_0^{2\pi} \frac{1}{(1 + |f(z)|^2)^2} \mathfrak{U}(z) d\theta - \frac{2}{4\pi} \int_0^x \frac{dr}{T} \int_0^x \log(1 + |f(z)|^2) \frac{\vartheta\mathfrak{U}(z)}{ir} de$ $+ \int_0^x \frac{1}{T} \left[\int_0^x \int_0^{2\pi} \frac{1}{(1 + |f(z)|^2)^2} \mathfrak{U}(z) r dr d\theta\right]$ $\leq \operatorname{Ir} T(x, f) + o(1) ,$ $\left|\frac{1}{4\pi} \int_0^{4\pi} \log(1 + |f(z)|^2) \mathfrak{U}(z) d\theta\right|$ $\leq \operatorname{Ir} m(x, f) + O(1) \leq \operatorname{Ir} (x, f) + O(1) ,$ $\left|\int_0^x \frac{dr}{T} (\sum_{|a_i| < x} \mathfrak{U}(a_i) \mathfrak{m}(a_i))\right| \leq \int_0^x \frac{dr}{T} \operatorname{K} \sum_{|a_i| < x} \mathfrak{m}(a_i)$ $\left|\int_0^x \frac{dr}{T} (\sum_{|a_i| < x} \mathfrak{U}(a_i) \mathfrak{m}(a_i))\right| \leq \int_0^x \frac{dr}{T} \operatorname{K} \sum_{|a_i| < x} \mathfrak{m}(a_i)$

$$\leq K \int_{0}^{r} \frac{\pi(r, \infty)}{r} dr = K N(r, \infty)$$

$$\leq K T(r, f).$$

Hence
$$\left|\int_{x}^{x} \frac{d\tau}{\tau} \int_{0}^{2\pi} \log\left(1 + |f(z)|^{2}\right) \frac{\Im u(z)}{\Im \tau} d\theta$$

is bounded. Thus we get the following theorem:

Theorem 1. Let f(z) be a meromorphic function whose characteristic function is bounded, then

$$\int_{0}^{T}\int_{0}^{2\pi}\log^{+}|f(z)|\frac{\partial u(z)}{\partial x} x d\theta$$

is bounded.

t

We put

$$\int_{1}^{\infty} \int_{|z-\frac{3}{4}e^{i\varphi}| < \frac{1}{4}}^{\cos \frac{1}{2}} d\psi \int_{1}^{\cos \frac{1}{2}} \log^{\frac{1}{4}} \frac{1}{|f-\alpha|} dt ,$$

where $z = re^{i\theta} = e^{i\frac{\theta}{2}} - te^{-i\frac{\theta}{2}}$, $o < \tau < i$, and $t = |e^{i\frac{\theta}{2}} - z|$. Then applying Tuji's method, from Theorem 1, we have the following theorem:

Theorem 2. The set of
$$e^{i\varphi}$$
 where $|_{i(\varphi)} = \infty$, is of capacity o.

In this note we denote by g(t) a positive function of t such that

$$\lim_{t \to 0} \int_{t}^{0} g(t) dt = \infty.$$

Then we tet the following theorem.

Theorem 3. Let f(z) be a meromorphic function whose characteristic function is bounded. We suppose that. E is a Borel set on the unit circle |z|=1 and E is of capacity positive. If at each point $P(z=e^{i\varphi})$ belonging to E, there exists an angular domain with vertex at P in which

$$\log^{+} \frac{1}{|f(z)-a|} \ge g(t)$$
, where $t = |e^{i\varphi} - z|$

then $f(z) \equiv a$

Corollary. We suppose that f(z)is regular in the unit circle and |f(z)| < 1 . We put $\sigma(\varphi) = \lim_{x \to 1} \int_{0}^{\beta} \log \left| \frac{1 - \overline{\alpha} f(z)}{f(z) - \alpha} \right| d\varphi$,