By Masatsugu TSUJI

(Communicated by Y. Komatu)

1. Let G be a Fuchsian group of linear transformations $S_n(z)$ (n=0,1,2,...), which make |z|<1 invariant and D_o be its fundamental domain, which contains z=0 and is bounded by orthogonal circles to |z|=1 and a closed set e_o on |z|=1. We remark that D_o can be so constructed that the equivalent points on the boundary of D_o are equidistant from $z=0^{-1}$. Let z_n , D_n , e_n be equivalents of $z_o=0$, D_o , e_o respectively.

Theorem 1. If $m \cdot e_o > 0$, then $\sum_{n=0}^{\infty} (1 - |z_n|) < \infty$. The converse is not true in general.

<u>Proof</u>. Since $me_0 > 0$, we have $me_n > 0$ (n=0,1,2,...). Let

$$u_n(z) = \int_{e_n} \frac{1 - |z|^2}{|z - e^{i\theta}|^2} d\theta$$

then $u_n(z_n) = u(0) = m e_0$, so that

$$me_o = u_n(z_n) \leq \frac{2 m e_n}{1 - |z_n|},$$

hence

$$\sum_{n=0}^{\infty} (1-|z_n|) \leq \frac{2\sum_{n=0}^{\infty} me_n}{me_0} \leq \frac{4\pi}{me_0} < \infty$$

Let K_1 , ..., K_n $(n \ge 3)$ be *n* circles on the *w*-plane, which lie outside each other. We invert them on any one of them indefinitely, then we obtain infinitely many circles clustering to a non-dense perfect set E. As Myrberg²⁾ proved, E is of positive logarithmic capacity, so that if we map the outside of E on |z| < 1 by w = f(z), then f(z) is automorphic to a certain Fuchsian group G, such that $\sum_{n=0}^{\infty} (1 - |z_n|) < \infty$. On the other hand, as I have proved in a former paper j, $me_0 = 0$. Hence the converse is not true in general.

2. Let z be any point $\ln |z| < 1$ and (z) be its equivalent in D_0 . Let $z=re^{i\theta}$ ($0 \le r < 1$) be a radius through $e^{i\theta}$. We denote the set $(re^{i\theta})(0 \le r < 1)$ by $E(\theta)$. Then

Theorem 2. (1) If
$$\sum_{n=0}^{\infty} (1-|z_n|) < \infty$$
,

then $\lim_{r\to i} |\langle re^{i\theta} \rangle| = 1$ for almost all $e^{i\theta}$. (11) If $\sum_{n=0}^{\infty} (1-|z_n|) = \infty$, then $E(\theta)$ is everywhere dense in D_0 for almost all $e^{i\theta}$.

I have proved this theorem in a former paper? but my proof depends on a theorem, which is false. A proof is given by Yûjôbô.⁵⁾ I will give the following proof, which is somewhat simpler than his. In the proof, we use the following lemma.⁶⁾ Let E_o be a closed set in D_o , which is of positive logarithmic capacity and E_n be its equivalents. We take off $\sum_{n=0}^{\infty} E_n$ from |z| < 1 and let Δ be the remaining domain. We map Δ on $|\zeta| < 1$ and let $\sum_{n=0} E_n$ be mapped on a set e on $|\zeta| = i$. Then

Lemma. (1) If $\sum_{n=0}^{\infty} (1 - |z_n|) < \infty$,

then $0 < me < 2\pi$. (11) If

 $\sum_{n=1}^{\infty} (1-|z_n|) = \infty$, then $me = 2\pi$.

Proof of Theorem 2;

(i) Suppose that $\sum_{n=0}^{\infty} (1-|z_n|) < \infty$,

then the Green's function

$$G(z) = \sum_{n=0}^{\infty} \log \left| \frac{1 - \overline{z}_n z}{z - z_n} \right|$$
(1)

exists and $\lim_{z\to e^{i\theta}} G(z) = 0$ almost everywhere on |z| = 1, when $z \to e^{i\theta}$ non-tangentially to |z| = 1. From this, we see that $\lim_{z\to t} |(\mathbf{r}e^{i\theta})| = 1$ for almost all $e^{i\theta}$

(11) Next suppose that $\sum_{n=0}^{\infty} (1-|z_n|) = \infty$. Let K_0 be a disc contained in D_0 and K_n be its equivalents and C_n be its boundary. We take off $\sum_{v=0}^{\infty} K_v$ from |z| < 1 and Δ be the remaining domain and we take off $\sum_{v=0}^{\infty} K_v$ from |z| < 1 and Δ_n be the remaining domain.

Let
$$u_n(z)$$
 be a bounded harmonic
function in Δ_n , such that
 $u_n(z) = 0$ on $\sum_{v=0}^{n} C_v$, (2)
 $u_n(z) = 1$ on $|z| = 1$.
First we will prove that

 $\lim_{n \to \infty} u_n(z) \stackrel{\text{\tiny def}}{=} 0 \quad \text{in } \Delta \qquad (3)$

We map Δ on $|\zeta| < 1$, then by the lemma, |z| = 1 is mapped on a null set on $|\zeta| = 1$. Let $\sum_{\nu=n+1}^{\nu} C_{\nu}$ be mapped on a set e_n on $|\zeta| = 1$, then $\lim_{n\to\infty} me_n = 0$. Let $u_n(z)$ become a harmonic function $v_n(\zeta)$ in $|\zeta| < 1$, then, since |z| = 1 is mapped on a null set, we have