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§1, Let S be a closed Riemann
surface with genus 4 22 , whose
equation is given by S (x.4) =0 ,

S(x, §) Dbeing an irreducible polyno-
mial of degree M in %X and M in

4 . Let fct) and %(t) be mero-
morphic functions in the circle
RRI<KR . If S(f), 3r))=o0 s WO
say that f &) ~and %(t) are unifor-
mizing functions., In this note we will
prove the following theorem:
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where 'L (t, ) and Ttr, 4) are Nevan-
linna’s characteristic functions.

§ 2, The algebraic function can
be uniformized by means of Fuchsian
functions x = X(z) , 4 = ¥(Z) , in
such a manner that in a sufficiently
small neighbourhood of a point Z 1in
the principal circle of the group the
correspondence between the points of
the plsne and the points of § is one
to ona. '
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In this note, by infinity points on

we mean points where X =o , We

suppose that infinity points on § are
not branch points.

(I)o At a branch point (4, 4)= (¢, b)
of order m -1
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where V(x) 18 bounded function in
a neighborhood of the point (a, b) .
Since J(¥) and $.t) are single-
valued functions,
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Qgm £0 5 by %o . From (1)
and (2) we get W = [£-t,/*ts (1) .
where §(t) 18 a bounded function in
a neighbourhood of t=1t, ,

(II). At an infinity point on S :
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where (g, ¥0 . From (3) and (4) we
get
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By Ahlfors’ theorem (An extension
of Schwarz’s lemma, Trans. of Amer,
Math. Soc. 43, 1938) we get the fol-
lowing theorem:

Theorem l. We suppose that infini-
ty points on S are not branch points,
If we put 2 ()= Z (f@4), $(%)) , then
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§ a2, rLet Gy, [\, L)  be harmo-
nic on § , except two logarithmic
singular points at [, and [, and let

I (e, 40 and [} (¢, <2) be branch
points of order 4, -t and %, -1 ,
respectively;

il“‘é (_X%?-_l + bounded fharmonic
* t
function at F‘,

Googp L0y |
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function at [,

wo put Gwl’)= G g«

and (T2 r)-—l-[ G, )de,

where & = Tei® ~ o Putting

Gty = GHots %, ) = G0, ) +U .ot 5, 1)
G ) -G wn )= Uk, &0, My,

then 1J(k,x, %, ") and Uttiaf. M2}
are bounded functions in the circle
i < R . Hence we get
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