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R. We may and do use, as a canoni-
cal domain of multiplicity m ( >2), a
concentric annular ring slit along
concentric circular arcs., Let the
boundary components of such a domain

D , laid on z-plane, be
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and the interior and the exterior sides
of the slits CJ (3= 42m) be
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respectively., The total boundary of
D Dbe denoted by
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Any functlion U (Z) regular harmo-

nic in the domain D and continuvous
on the closed domain D + C 1is repre-~
sented by Green’s formula in the form

)
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(%, ~) being, as usual, Green
function (with variable ¢ ) of D with
singularity at 2 , Y, and 4, denot-
ing inward normal and arc-length para-
meter at a boundary point § .

If we denote the equation of the
boundary C by %z = ¢ (4 and the har-
monlc measure of a part of C from a

fixed point to the point J(4) by
w (z/ ;(4)) s then we have
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But, we use here an another aggrega-
tion, namely the one corresponding to
Herglotz type. Let P (z) Vve an
analytic function one-valued and regu-
lar in ) and continuous on D+
We denote by ¢ (3, %) ar analytic
function of Z whose real part coin-
cides with 3%(5, 2) ;: ¢ (5,z) belng
uniquely determined except an additive
purely imaginary quantity depending

possibly on ¢ and possessing multi-
valuedness due to periodicity moduli
with respect to the boundary components.
Ne have then, by the formula mentioned

above,
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c being a real constant.
We now assume that RE(z) 1is of
bounded variation along C . Then,

so 1s also the function (e CJ)
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in fact,
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In this case, we may write the ex-
pression as in the Herglotz type which

states
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Now, considering residue at point
% » We have particularly
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and hence
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where 03 (¢) 1s defined by
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The last equation shows that an addi-
tive pursly imaginary constant ic con-
tained in the general representation

vanishes out for the particular func-

tion Py= L o
2. Consider now an analytic func-

tion £(z) one-valued and regular
in D “and plecewise regular on D+C .
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