By Yûsaku KOMATU

1. We may and do use, as a canonical domain of multiplicity $n(>2)$, a concentric annular ring slit along concentric circular arcs. Let the boundary components of such a domain D, laid on z-plane, be

$$
\begin{gathered}
C_{1}: \quad|z|=1 ; \quad C_{2}:|z|=Q(<1) ; \\
C_{j}: \quad|z|=m_{j}, \quad \theta_{j} \leqq \arg z \leqq \theta_{j}+\gamma_{j} \\
(3 \leqq j \leqq n),
\end{gathered}
$$

and the interior and the exterior sides of the slits $C_{j}(3 \leqq j \leqq n)$ be

$$
\begin{array}{ll}
C_{j}^{(i)}: \quad|z|=m_{j}-0, & \theta_{j} \leqq \arg z \leqq \theta_{j}+\gamma_{j}, \\
C_{j}^{(e)}, & |z|=m_{j}+0,
\end{array} \theta_{j}+\gamma_{j} \geqq \arg z \geqq \theta_{j}, ~ \$
$$

respectively. The total boundary of D be denoted by

$$
C=\sum_{j=1}^{n} C_{j}
$$

Any function $U(z)$ regular harmonic in the domain D and continuous on the closed domain $D+C$ is represented by Green's formula in the form

$$
\begin{aligned}
& U(z)=\frac{1}{2 \pi} \int_{C} U(\zeta) \frac{\partial g(\zeta, z)}{\partial \nu_{\zeta}} d s_{\zeta}, \\
& g(\zeta ; z) \text { being, as usual, Green } \\
& \text { function (with variable } \zeta \text {) of } D \text { with } \\
& \text { singularity at } z, \nu_{3} \text { and } s_{3} \text { denoto } \\
& \text { ing inward normal and arc-length para- } \\
& \text { meter at a boundary point } \zeta \text {. } \\
& \text { If we denote the equation of the } \\
& \text { boundary } C \text { by } z=\zeta(s) \text { and the hara } \\
& \text { monic measure of a part of } C \text { from a } \\
& \text { fixed point to the point } \zeta(s) \text { by } \\
& \omega(z, \zeta(s)) \text {, then we have } \\
& \frac{1}{2 \pi} \frac{\partial g(\zeta, z)}{\partial \nu_{\zeta}} d S_{\zeta}=\operatorname{d\omega J}(z, \zeta(\Delta)) \\
& \equiv \omega(z, d \zeta(s)) .
\end{aligned}
$$

But, we use here an another aggregation, namely the one corresponding to Herglotz type. Let $\dot{\Phi}(z)$ be an analytic function one-valued and regular in D and continuous on $D+C$. We denote by $G(5, z)$ ax analytic function of z whose real part coincides with $g(5, z) \quad G(5, z)$ being uniquely determined except an additive purely imaginary quantity depending
possibly on ζ and possessing multivaluedness due to periodicity moduli with respect to the boundary components. We have then, by the formula mentioned above,

$$
\Phi(z)=\frac{1}{2 \pi} \int_{C} \pi \Phi(\zeta) \frac{\partial G(\zeta, z)}{\partial \nu_{\zeta}} d s_{\zeta}+i c
$$

c being a real constant.
We now assume that $\mathcal{R} \Phi(z)$ is of bounded variation along C. Then, so is also the function $\left(\zeta \in C_{j}\right)$

$$
\rho_{j}(\varphi)=\int^{\varphi} R \Phi(\zeta) d s_{\zeta} \quad(\varphi=\operatorname{axg} \zeta)
$$

in fact,

$$
\int_{C_{j}}\left|d \rho_{j}(\varphi)\right|=\int_{C_{j}}|R \Phi(\zeta)| d s_{\zeta}
$$

In this case, we may write the expression as in the Herglotz type which states

$$
\Phi(z)=\frac{1}{2 \pi} \sum_{j=1}^{n} \int_{C_{j}} \frac{\partial G(\zeta, z)}{\partial \nu_{\zeta}} d p_{j}(\varphi)+i c
$$

Now, considering residue at point z we have particularly

$$
\frac{1}{2 \pi} \int_{C} \frac{\partial G(\zeta, z)}{\partial \nu_{5}} d s_{S}=1
$$

end hence

$$
1=\frac{1}{2 \pi} \sum_{j=1}^{n} \int_{C_{j}} \frac{\partial G(\zeta, z)}{\partial \nu_{\zeta}} d \sigma_{j}(\varphi),
$$

where $\sigma_{j}(\varphi)$ is defined by

$$
\sigma_{j}(\varphi)=\left\{\begin{array}{ll}
\varphi & \text { on } C_{1}, \\
-Q \varphi & \text { on } C_{2} ; \\
m_{j}\left(\varphi-\theta_{j}\right) & \text { on } C_{j}^{(i)}, \\
-m_{j}\left(\varphi-\theta_{j}-\gamma_{j}\right) & \text { on } C_{j}^{(Q)}
\end{array}\right\}(3 \leq j \leqq n) .
$$

The last equation shows that an additive purely imaginary constant ic contained in the general representation vanishes out for the particular func* tion $\Phi(z) \equiv 1$ 。
2. Consider now an analytic function $f(z)$ one-valued and regular in D and piecewise regular on $D+C$.

