By Tsuyoshi hayashida.

That the fundamental group of a Riemannian surface has no relation other than

$$
\begin{equation*}
A_{1} B_{1} A_{1}^{-1} B_{1}^{-1} \cdots A_{s} B_{s} A_{s}^{-1} B_{s}^{-1}=E \tag{1}
\end{equation*}
$$

is recognized from the algebraic funco tion theory. But in general it is hard to see whether or not certain given mato rices considered as multiplicative group have any relation such as (1). And when we represent a group by matrices, above all in the case of free groum ps, we must be careful about the existence of the intrinsic matrices-relations (for non-singular matrices) like

$$
\begin{align*}
& A^{\alpha_{1}} B^{\beta_{1}} \cdot . A^{\alpha_{i}} \cdots L^{\lambda_{j}} \ldots=E  \tag{2}\\
& \text { finite }
\end{align*}
$$

In fact in the case of characteristic $P$ there are such identities as (2). I shall prove that there are no such iden tities in the case of characteristic $O$ or infinite field, or if "length" is short in the case of finite field. I shall show in a similar manner that a free group which is generated by countable elements, is contained in the unimodular group of order two whose components are integers.

Theorem。 Let $A, B, \cdots, L$ be matrix-variables of order $n$ and let their components run through the field $k$ having infinitely many elements. Then there is no system of a finite number of non-zero integers $\alpha_{1}, \beta_{1}, \cdots, \alpha_{i}, \cdots, \lambda_{j} \cdots$. such that $A^{\alpha_{1}} B^{\beta_{1}} \cdots A^{\alpha_{i}} \cdots L^{\lambda_{j}} \ldots=E \quad$ is an identity for non-singular matrices.

Proof. When a system of integers $\left(\alpha_{1}, \beta_{1}, \cdots, \alpha_{i}, \cdots, \lambda_{j}, \cdots\right)$ is given, we can find matrices $A_{0}, B_{0}, \cdots, L_{0}$, whose components are elements of $k$ and
$A_{0}^{\alpha_{1}} B_{0}{ }^{\beta_{1}} \cdots A_{0}^{\alpha_{i}} \ldots L_{0}^{\lambda_{j}} \ldots \neq E$ 。 It is sufficient to show this in the case $n=2$, for if $n>2$ we can choose $a_{i i}=1(i>2)$, $a_{i j}=0$ ( $i$ or $j>2$ ) etc. Put $A=B^{x} C^{y}$ and let $x \neq 0, y \neq 0, x+\beta_{i} \neq 0, y+\gamma_{j} \neq 0$. Then, if $A$ is substituted by $B^{x} C^{y}$ we find $A^{\alpha_{1}} B^{\beta_{1}} \ldots A^{\alpha_{i}} \ldots L^{\lambda_{1}} \ldots=E$ is not $r \theta=$ duced to the trivial case: $E=E$ Proceeding in this manner, the proposition will be reduced to the case when the number of matrix-variables is two. Now wave to show that there are
no identity like

$$
\begin{equation*}
A^{\alpha_{1}} B^{\beta_{1}} \cdots A^{\alpha_{m}} B^{\beta_{m}}=E \tag{3}
\end{equation*}
$$

Suppose there exist such one. Put $A_{0}$ $=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), B_{0}=\left(\begin{array}{ll}1 & 0 \\ \lambda & 1\end{array}\right)$ in (3). Then we obtain:

$$
\begin{aligned}
& A_{0}^{\alpha_{1}} B_{0}^{\beta_{1}} \cdots A_{0}^{\alpha_{m}} B_{0}^{\beta_{m}}=\left(\begin{array}{cc}
1+\alpha_{1} \beta_{1} \lambda & \alpha_{1} \\
\beta_{1} \lambda & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
1+\alpha_{m} \beta_{m} \lambda & \alpha_{m} \\
\beta_{m} \lambda & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\alpha_{1} \beta_{1} \cdots \alpha_{m} \beta_{m} \lambda^{m}+\cdots & * \\
* & *
\end{array}\right), \\
& \alpha_{1} \beta_{1} \cdots \alpha_{m} \beta_{m} \neq 0 .
\end{aligned}
$$

The polynomial $\alpha_{1} \beta_{1} \cdots \alpha_{m} \beta_{m} \lambda^{m}+\cdots$ must be 1 for all values of $\lambda$ in te. But if $m \geqq 1$ and $t$ contains infinitely many elements, this is impossible.

Remark. In the case of Galois field $t 2$, if the order $p^{5}$ of $k$ is greater than the "length" $m$, the above proof is applicabie.

When take $H=\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right) \quad T=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
any element $M$ of the unimodular group can be expressed uniquely in the form $M= \pm H^{\alpha_{0}} T H^{\alpha_{1}} T \cdots T H^{\alpha_{m-1}} T H^{\alpha_{m}}$, in which we must take $\alpha_{i}=+1$ or -1 , but $\alpha_{0}$ and $\alpha_{m}$ are possibly zero [Takagis Shoto Solsuron Kôgi]. This is oasily vorifiod when we notice that

$$
T H=-\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), T H^{-1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

If we represent $M$ by $\pm\left(\alpha_{0}, \alpha_{1}\right.$, . $\left.\cdots, \alpha_{m-1}, \alpha_{m}\right)_{9}$ then as an example, countable elements $(1,-1,1),(1,1,-1,1,1), \cdots$, $\underbrace{1,1, \cdots, 1}_{k},-1, \underbrace{1,1, \cdots, 1}_{k}, \cdots$ generste a free group.
(*) Racoived March 7, 1948.

Pokyo Institute or Tochnology.

