consequently we get

$$
\left|A(x(f)) \operatorname{det} .\left|\frac{d f_{i}^{3}\left(t_{i}\right)}{d t_{i}}\right|-A(x(g)) \operatorname{det}\right| \frac{d g_{i}^{j} i t_{i}}{d t_{i}}|\mid<\delta
$$

and orror of the integral (2) and that substituted $g_{i}\left(t_{i}\right)$ thereinto is less than δ. Then, on account of (1) our resu1t follows.
(*) Reseived March 7, 1949.

Tokyo Institute of Technology.

Let us substitute $f_{i}(t)$ by partially ilnear curves $g_{i}(t)$ whose corners are $g_{i}(k / N)=f_{i}(k / N), k=1,2, \cdots, N$. For an arbitrarily given positive number δ, we can choose N sufficiently large such that $\left|f_{i}^{j}(t)-g_{i}^{j}(t)\right|<\varepsilon \quad$ and $\left|\frac{d f_{i}^{j}(t)}{d t}-\frac{d g_{i}^{j}(t)}{d t}\right|<\varepsilon$;

Where on the right side $x^{j}=f_{1}^{j}\left(t_{1}\right)+\cdots+$ $f_{n}^{j}(t n)$

Proof. The integral on the right side is

$$
\int_{0 \leqq t_{i} \leqq i} A\left(x_{1}^{1}, \cdots, x^{n}\right) d e t\left|\frac{d f_{i}^{j}\left(t_{i}\right)}{d t_{i}}\right| d t_{1} \cdots d t_{n} .
$$

VECTOR-GROUP IN REAL EUCLIDEAN SPACE

By Tatsuo HOMMA and Takizo MINAQANA.

We shall describe in this paper an elementary proof of the theorem which has also been proved in this volume by Prof. Iwamura, Messrs. M. Kuranishi and T. Hayashida.

We denote "free vectors" in an n dimensional real euclidean space R_{n} by $x, y, z, \ldots, a, b, C, \ldots \ldots$, and the corres. ponding points in R_{n} by the same symbols, i.e., "a point x " means the point which is located by the free vector x starting from the original point o previously determined in R_{n}. The distance between any two points x and y is defined by the euclidean one, i. $\theta_{0},|x-y|$. We shall prove in this paper the following Theorem and Corollary.

THEOREM. Let M be a real euclidean vector-group in R_{n} and contain a continuum K. Then M contains the whole straight-line through any two distinct points of K

COROLLARY. Let M be a real euclidean vector-group in R_{n} and let any two points of M be connected by a continuw in M. Then M coincides with a real Innear vector-group.

We shall prove the theorem by the induction with respect to the dimension-
number n of R_{n}. If $n=1$, the theorem is ovident. Suppose $n>1$.

IENMA 1. Let K be any continuum in M. We define K^{\prime} as the aggregate of all the points $x-y+z$, where x, if and Z run throughout K. Then K is siso a continuum in M and $K \subset K^{\prime}$. The proof is immediate. We are going to prove that the straight-line segment joining any two distinct points a and b of K is contained in $K^{\circ f}=\left(K^{\prime}\right)^{\prime}$. As K is connected, a and b can be connected for any positive ε by an ε-chain with its points of joint all belonging to K. This chain can be represented by

$$
x(t) ; \quad 0 \leqslant t \leqslant 1,
$$

Where $x(t)$ is a continuous curve in $0 \leqslant t \leqslant 1$, with its points of joint $x\left(t_{i}\right)$: $0=t_{0}<t_{1}<t_{2} \leqslant \ldots<t_{m}=1$ all belonging to K and the parts $x(t), t_{i} \leqslant t \leqslant t_{i+1}$, $i=0,1,2, \ldots m-1$ are all stralght-line segments. Moreover $\left|x\left(t_{i+1}\right)-x\left(t_{i}\right)\right|<\varepsilon$, for $i=0,1,2, \ldots, m-1$.

