Y. FUKAIKODAI MATH. J.23 (2000), 35–80

HITTING DISTRIBUTION TO A QUADRANT OF TWO-DIMENSIONAL RANDOM WALK

Yasunari Fukai

Let $H_L(\xi, \eta)$ be the probability that a two-dimensional simple random walk starting at ξ hits the third quadrant L for the first time at η . The main objective of this paper is to investigate the asymptotic behavior of $H_L(\xi, \eta)$. It is especially proved that there exists a constant C_0 such that for $\xi \in \mathbb{Z}^2 \setminus L$ and $l \in \mathbb{N}$,

$$|H_L(\xi, (-l, 0)) - h_L(\xi, (-l, 0))| \le C_0\{|\xi + (l, 0)|^{-3} + |\xi|^{-2/3}l^{-5/3}\},\$$

where $h_L(\xi, \cdot)$ is the density of the hitting distribution to the third quadrant of two-dimensional standard Brownian motion starting at ξ . This estimate is sharp at least in the sense that the powers -2/3 and -5/3 can not be improved.

1. Introduction and statements of results

Let $\{S(n)\}_{n=0}^{\infty}$ be a two-dimensional simple random walk starting at $\xi \in \mathbb{Z}^2$, namely,

$$S(0) = \xi$$
 and $S(n) = S(0) + \sum_{k=1}^{n} X_k$

where X_1, X_2, \ldots is a sequence of independent, identically distributed random variables that take four values (1,0), (-1,0), (0,1), (0,-1) with equal probability. We denote by P_{ξ} the probability law of the process $\{S(n)\}_{n=0}^{\infty}$. For a subset A of \mathbb{R}^2 such that $A \cap \mathbb{Z}^2 \neq \emptyset$, define

$$\tau_A = \inf\{n \ge 1 : S(n) \in A\},\$$

the hitting time of A. Since S(n) is recurrent, $\tau_A < \infty$ a.s. The hitting distribution $H_A(\xi, \eta)$ is defined by

$$H_A(\xi,\eta) = P_{\xi}\{S(\tau_A) = \eta\}, \quad (\xi \in \mathbb{Z}^2 \setminus A, \eta \in A \cap \mathbb{Z}^2).$$

¹⁹⁹¹ Mathematics Subject Classifications: Primary 60J15; secondary 60J45.

Keywords and phrases: Two-dimensional simple random walk, hitting distribution, two-dimensional standard Brownian motion, Green's function.

Received December 17, 1998; revised July 29, 1999.