HITTING DISTRIBUTION TO A QUADRANT OF TWO-DIMENSIONAL RANDOM WALK

Yasunari Fukai

Let $H_{L}(\xi, \eta)$ be the probability that a two-dimensional simple random walk starting at ξ hits the third quadrant L for the first time at η. The main objective of this paper is to investigate the asymptotic behavior of $H_{L}(\xi, \eta)$. It is especially proved that there exists a constant C_{0} such that for $\xi \in Z^{2} \backslash L$ and $l \in N$,

$$
\left|H_{L}(\xi,(-l, 0))-h_{L}(\xi,(-l, 0))\right| \leq C_{0}\left\{|\xi+(l, 0)|^{-3}+|\xi|^{-2 / 3} l^{-5 / 3}\right\}
$$

where $h_{L}(\xi, \cdot)$ is the density of the hitting distribution to the third quadrant of two-dimensional standard Brownian motion starting at ξ. This estimate is sharp at least in the sense that the powers $-2 / 3$ and $-5 / 3$ can not be improved.

1. Introduction and statements of results

Let $\{S(n)\}_{n=0}^{\infty}$ be a two-dimensional simple random walk starting at $\xi \in \boldsymbol{Z}^{2}$, namely,

$$
S(0)=\xi \quad \text { and } \quad S(n)=S(0)+\sum_{k=1}^{n} X_{k}
$$

where X_{1}, X_{2}, \ldots is a sequence of independent, identically distributed random variables that take four values $(1,0),(-1,0),(0,1),(0,-1)$ with equal probability. We denote by P_{ξ} the probability law of the process $\{S(n)\}_{n=0}^{\infty}$. For a subset A of \boldsymbol{R}^{2} such that $A \cap \boldsymbol{Z}^{2} \neq \emptyset$, define

$$
\tau_{A}=\inf \{n \geq 1: S(n) \in A\},
$$

the hitting time of A. Since $S(n)$ is recurrent, $\tau_{A}<\infty$ a.s. The hitting distribution $H_{A}(\xi, \eta)$ is defined by

$$
H_{A}(\xi, \eta)=P_{\xi}\left\{S\left(\tau_{A}\right)=\eta\right\}, \quad\left(\xi \in \boldsymbol{Z}^{2} \backslash A, \eta \in A \cap \boldsymbol{Z}^{2}\right)
$$

[^0]
[^0]: 1991 Mathematics Subject Classifications: Prımary 60J15; secondary 60J45.
 Keywords and phrases: Two-dimensional simple random walk, hittıng distribution, twodimensional standard Brownian motion, Green's function.

 Received December 17, 1998; revised July 29, 1999.

