ON THE VALUE DISTRIBUTION OF $f f^{(k)}$

Chung Chun Yang ${ }^{\dagger}$ and Pei Chu Hu

Abstract

Let f be a transcendental entire function. In this paper we will prove that if f is of finite order, then there exists at most one integer $k \geqq 2$ such that $f f^{(k)}$ may have non-zero and finite Picard exceptional value. We also give a class of entire functions which have no non-zero finite Picard values. If f is a transcendental meromorphic function, we obtain that for non-negative integers n, n_{1}, \cdots, n_{k} with $n \geqq 1, n_{1}+\cdots+n_{k} \geqq 1$, if $\delta(o, f)>3 /\left(3 n+3 n_{1}+\cdots+3 n_{k}\right.$ +1), then $f^{n}\left(f^{\prime}\right)^{n} \cdots\left(f^{k}\right)^{n_{k}}$ has no finite non-zero Picard values.

I. Introduction and main results

Let f be a transcendental meromorphic function. In 1959, W.K. Hayman [4] proved that if n is an integer satisfying $n \geqq 3$, then $f^{n} f^{\prime}$ takes every non-zero complex value a infinitely often. He conjectured [5] that this remains valid for $n=1$ and $n=2$. The case $n=2$ was settled by E. Mues [9] on 1979. The case $n=1$ is still open.
J. Clunie [3] proved that Hayman's conjecture is true when f is entire and $n=1$. W. Hennekemper [7] extended Clunie's result and proved

$$
\begin{equation*}
T(r, f) \leqq\left(4+\frac{1}{k+1}\right)\left\{\bar{N}(r, f)+\bar{N}\left(\frac{1}{\left(f^{k+1}\right)^{(k)}-c}\right)\right\}+S(r, f) \tag{1}
\end{equation*}
$$

for $k \in N, c \in C-\{0\}$, where the argument used here is based on the Nevanlinna theory, its associated standard symbols and notations, see, e.g. [6]. Particularly, $S(r, f)$ will be used to denote any quantity that satisfies $S(r, f)=o\{T(r, f)\}$ as $r \rightarrow \infty$ and $r \notin E$ with E being a set of r values of finite linear measure. W. Bergweiler and A. Eremenko [2] proved this for functions of finite order. Recently, Q. Zhang [16] extended Hennekemper's result (1) for $k=1$ and c is replaced by any small function $a(z)(\not \equiv 0)$ of f, i.e. $a(z)$ satisfies $T(r, a)=S(r, f)$. W. Bergweiler [1] proved that if f is a transcendental meromorphic function of finite order and if a is a polynomial which does not vanish identically, then $f f^{\prime}-a$ has infinitely many zeros.
† The research work is partially supported by a U.P. G.C. grant, Hong Kong. AMS Subject Classification: 30D35.
Key words: Entire function, Meromorphic function, Picard value, Deficient condition. Received January 6, 1995.

