A COHOMOLOGICAL APPROACH TO THEORY OF GROUPS OF PRIME POWER ORDER

By Pham Anh Minh

§0. Introduction

Let G be a finite group and A a G-module. Consider the set of group extensions (Г)

$$
0 \rightarrow A \rightarrow \Gamma \rightarrow G \rightarrow 1
$$

in which the G-module of A defined via conjugation of G coincides with the one already given in A. Two extensions (Γ) and (Γ^{\prime}) are said to be equivalent if there exists a homomorphism $f: \Gamma \rightarrow \Gamma^{\prime}$ such that the diagram

is commutative.
Let $\mathcal{E}(\mathcal{G}, \mathcal{A})$ be the set of equivalence classes of such extensions. It is well-known that there exists a natural 1-1 correspondence

$$
H^{2}(G, A) \stackrel{\theta}{\longleftrightarrow} \mathcal{E}(G, A)
$$

with $\theta[\Gamma]$ the factor set of the extension (Γ). Good description of $H^{2}(G, A)$ is then an effective tool to the study of group extensions of A by G. This material has been used by several authors: Babakhanian [1], Baer [2], Beyl [4], Evens [7], Gruenberg [9], Schreier [20] [21], Stammbach [22] ... to obtain group theoretical results.

In this work, we restrict ourselves to the case where G is a group of prime power order (i.e. a p-group); in such a case, A can be chosen to be central and elementary. Our method is focussed on the Hochschild-Serre spectral sequence of a central extension: by studying the relation between the Hochschild-Serre filtration of $H^{2}(G, A)$ and the Frattini class of Γ, we obtain cohomological proofs of results concerning the Frattini subgroup of a p-group. Most of these results were already proved by other group theorists (Berger-Kovaćs-Newman [3], Blackburn [5], Kahn [13] [14], Hobby [10], Thompson [23] ...).

This note is organized as follows. In $\S 1$, we consider the central extension by an elementary abelian p-group and the term $E_{\infty}^{2, j},(i+j=2)$ of the Hochschild-Serre spectral sequence for it. $\S 2$ is devoted to the study of the relation between the Hochschild-Serre filtration of $H^{2}(G, A)$ and the Frattini class of Γ; the main results of this section are Theorems 2.1 and 2.3. They are applied to the study of p-groups with cyclic Frattini

[^0]
[^0]: Received May 14, 1993.

