K. AZUKAWA KODAI MATH. J. 10 (1987), 83-92

THE INVARIANT PSEUDO-METRIC RELATED TO NEGATIVE PLURISUBHARMONIC FUNCTIONS

Dedicated to Professor Tadashi Kuroda on his 60th birthday

By Kazuo Azukawa

Introduction.

In [1], using a family of negative plurisubharmonic functions on a complex manifold M, the author defined an invariant pseudo-metric P^{M} on M whose indicatrices are always pseudoconvex domains in the holomorphic tangent spaces. On the other hand, Klimek [5] defined an extremal plurisubharmonic function g_{p}^{M} with pole at a given point p of M.

The aim of the present note is to clarify the relationship between $P^{\mathcal{M}}$ and $g_p^{\mathcal{M}}$ (Proposition 2.4), and to simplify the original construction of $P^{\mathcal{M}}$ in [1] (Lemma 2.1, Corollary 2.5). We also show that $P^{\mathcal{M}}$ is a higher-dimensional generalization of the pseudo-metric $c_{\beta}^{z}|dz|$ induced from the capacity $c_{\beta}^{z} = \exp(-k_{\beta}^{z})$ on an open Riemann surface M (cf. [11]), where $k_{\beta}^{z}(p)$ is the Robin constant at a point p of M with respect to a local coordinate z around p (Proposition 3.1). Finally, we derive some results related to the pseudo-metric $P^{\mathcal{M}}$ for Riemann surfaces M.

§1. Klimek's extremal plulisubharmonic functions.

Let p be a point of a complex manifold M. We denote by $PS^{M}(p)$ the family of all $[-\infty, 0)$ -valued plurisubharmonic functions f on M such that the function $f-\log ||z||$ is bounded from above in a deleted neighborhood of p for some holomorphic local coordinate z with z(p)=0. We note that every $f \in PS^{M}(p)$ takes the value $-\infty$ at p, and that $PS^{M}(p)$ always contains the constant function $-\infty$. The definition of the family $PS^{M}(p)$ does not depend on the choice of the coordinate z with z(p)=0. According to Klimek [5], we define the extremal function g_{p}^{M} on M by

$$g_p^M(q) = \sup \{f(q); f \in PS^M(p)\}$$

for $q \in M$.

We quote from [5] some results on g_p^M . In [5], Klimek dealt with the case when M is a domain in C^m . However, one can see that these assertions hold also for prescribed manifolds M.

Received July 9, 1986