A TAUBERIAN THEOREM FOR CERTAIN CLASS OF MEROMORPHIC FUNCTIONS

Dedicated to Professor M. Ozawa on the occation of his 60th birthday

By Hiroshi Yanagihara

§1. Introduction.

Let f(z) be meromorphic in the plane. We define $m_2(r, f)$ by

$$m_2(r, f)^2 = \frac{1}{2\pi} \int_0^{2\pi} (\log |f(re^{i\theta})|)^2 d\theta$$

and denote by N(r, c) the usual Nevanlinna counting function for the *c*-points of f in $|z| \leq r$, then Miles and Shea had shown

(1)
$$K_2(f) \equiv \limsup_{r \to \infty} \frac{N(r, 0) + N(r, \infty)}{m_2(r, f)} \ge \frac{|\sin \pi \rho|}{\pi \rho} \left\{ \frac{2}{1 + \sin 2\pi \rho/2\pi \rho} \right\}^{1/2} \equiv C(\rho)$$

for $\rho \in [\mu_*(T(r, f)), \lambda_*(T(r, f))].$

Further they had characterized those f for which equality holds in (1) as functions which are locally Lindelöffian (or the reciprocals of such).

Let M_p be the class of all meromorphic functions f(z) of order ρ defined by g(z)/g(-z) with the canonical product

$$g(z) = \prod_{n=1}^{\infty} E(z/a_n, q), \qquad q = [\rho].$$

Recently by making use of Fourier series method, Ozawa proved

THEOREM A. Let f(z) belongs to M_p , then

(2)
$$\limsup_{r \to \infty} \frac{N(r, 0)}{m_2(r, f)} \ge \frac{\sqrt{2}}{\sqrt{\pi\rho}} \frac{|\cos \pi \rho/2|}{|\pi\rho - \sin \pi\rho|^{1/2}} \equiv B(\rho).$$

It is natural to hope that (2) holds for $\rho \in [\mu_*, \lambda_*]$ and that those f for which equality holds in (2) are f(z)=g(z)/g(-z) with locally Lindelöffian g. But when ρ is an even integer, $B(\rho)>0$ and the proof is not straightforward. We need some existence lemma of strong peaks for $f \in M_{\rho}$.

We assume that the reader is familiar with the fundamental concept of Nevanlinna theory and Fourier series method developed by Miles and Shea (See

Received September 20, 1983