ON THE ORDER OF AUTOMORPHISM GROUP OF A COMPACT BORDERED RIEMANN SURFACE OF GENUS FOUR

Dedicated to Professor Mitsuru Ozawa on his 60th birthday

By Takao Kato

§ 0. Introduction. For non-negative integers g and $k(2 g+k-1 \geqq 2)$, let $N(g, k)$ be the maximum of the orders of the automorphism groups of compact bordered Riemann surfaces of genus g having k boundary components. Oikawa [9] proved that every automorphism group of a compact bordered Riemann surface is isomorphic to a subgroup of the automorphism group of a compact Riemann surface of the same genus and that $N(g, k)$ is equal to the maximum of the order of the automorphisms groups of k-times punctured compact Riemann surfaces of genus g. Hurwitz [3] proved that $N(g, 0) \leqq 84(g-1)$. For infinitely many values of $g, N(g, 0)$ were determined by $[1,6,7,8]$. But, for infinitely many $g, N(g, 0)$ are not known. For every $g \geqq 0, N(g, 1), N(g, 2)$ and $N(g, 3)$ were determined by the author [4], for every $k \geqq 0, N(0, k), N(1, k), N(2, k)$ and $N(3, k)$ were determined by $[2,9,11,12]$ and for many other special pairs of g and $k, N(g, k)$ were determined by Ouchi [10]. In this paper we shall determine $N(4, k)$ for every $k \geqq 0$. Wiman [14] showed the equations of all the compact Riemann surfaces of genus 4 which have non-trivial automorphism groups and proved that $N(4,0)=120$. To determine $N(4, k)$, we shall study subgroups of groups which Wiman showed.

The author wishes to represent his thanks to Professor Accola who showed Wiman's paper $[13,14]$ and gave some advice to him and to Mr. Nakagawa who read the manuscript of this paper and pointed out many errors.
§1. Lemmas: Let S be a compact Riemann surface of genus 4 and let G be a group of automorphisms of $S . S / G$ has the conformal structure induced by the conformal structure of S such that the natural projection π of S onto S / G is holomorphic. Then, there are at most finite number of points P_{1}, \cdots, P_{t} on S / G over which π is ramified with multiplicities $\nu_{1}, \cdots, \nu_{t}\left(\nu_{j} \geqq 2\right)$, respectively. Then Riemann-Hurwitz's relation shows

$$
6 / N=2 \tilde{g}-2+\sum_{j=1}^{t}\left(1-1 / \nu_{j}\right),
$$

Received April 12, 1983

