GROWTH OF A COMPOSITE FUNCTION OF ENTIRE FUNCTIONS

By Kiyoshi Niino and Nobuyuki Suita

§ 1. Introduction.

Let $f(z)$ and $g(z)$ be entire functions. Then we have the well-known inequality

$$
\begin{equation*}
\log M(r, f(g)) \leqq \log M(M(r, g), f) . \tag{1}
\end{equation*}
$$

And it follows from Clunie [2] that if $g(0)=0$, then for $r \geqq 0$

$$
\begin{equation*}
\log M(r, f(g)) \geqq \log M(c(\rho) M(\rho r, g), f), \tag{2}
\end{equation*}
$$

where $0<\rho<1$ and $c(\rho)=(1-\rho)^{2} / 4 \rho$. Furthermore, these inequalities (1) and (2) are best possible. We next wish to have similar estimations of $T(r, f(g))$. As an immediate consequence of (1) and well-known inequalities $T(r, f) \leqq \log ^{+} M(r, f)$ $\leqq 3 T(2 r, f)$, we have

$$
\begin{equation*}
T(r, f(g)) \leqq 3 T(2 M(r, g), f) . \tag{3}
\end{equation*}
$$

The inequality (3), however, is not sharp.
The main purpose of this paper is to give an upper estimation of $T(r, f(g))$ and prove the following:

Theorem 1. Let $f(z)$ and $g(z)$ be entıre functions. If $M(r, g)>((2+\varepsilon) / \varepsilon)|g(0)|$ for any $\varepsilon>0$, then we have

$$
\begin{equation*}
T(r, f(g)) \leqq(1+\varepsilon) T(M(r, g), f) . \tag{4}
\end{equation*}
$$

In partıcular, if $g(0)=0$, then

$$
\begin{equation*}
T(r, f(g)) \leqq T(M(r, g), f) \tag{5}
\end{equation*}
$$

for all $r>0$.
Since $T\left(r, f\left(z^{n}\right)\right)=T\left(r^{n}, f(z)\right)$ for any meromorphic function $f(z)$, Theorem 1 is best possible. In the above example $g(z)$ is a polynomial. However, we shall

[^0]
[^0]: Received July 5, 1979

