LINEAR FUNCTIONAL

By Hisaharu UMEGAKI

In this paper we shall introduce a stationary natural mapping in W*algebra generated by a two-sided representation of a D^* -algebra \mathcal{O} with a motion G (e.g. cf. [8]) - a D^* algebra of is mean by a normed*-algebra with an approximate identity and a motion G is mean by a group of *automorphisms on a (the motion has been introduced by Segal for C*-algebra). Next, applying the stationary natural mapping and the decomposition theorem of Segal (cf. Th.4 and its proof of [7]) we shall prove an ergodic decomposition of a G-stationary semitrace of separable OL under a restriction which generalizes an irreducible decomposition of finite semitrace (cf. Th.1 of [9], I), ergodic decomposition of G-stationary trace (cf. Th.6 of [8]) and ergodic decomposition of invariant regular measure on a compact metric space with a group of homeomorphisms (cf. Th. in App. II of [3] and Th.7 of [7]).

1. Let $\mathcal{O}l$ be a D^* -algebra with an approximate identity $\{e_{\alpha}\}_{\alpha \in D}$ and with a motion $G(= \{s\})$ i.e. D is a directed set and $e_{\alpha}^* = e_{\alpha}$, $\|e_{\alpha}\| \leq 1$ for all $\alpha \in D$, $\|e_{\alpha} \times -x\| \rightarrow 0$ for all $x \in \mathcal{O}l$, and any s, $t \in G$ are automorphisms on $\mathcal{O}l$ such that $\|x^{s}\| = \|xx\|, x^{sx} = x^{ss}$ and $(x^{s})^{t} = x^{st}$ for all $x \in \mathcal{O}l$. Let τ be a Gstationary semi-trace of $\mathcal{O}l$, i.e. τ is a linear functional on the selfadjoint subalgebra generated by $\{xy\}, x, y \in \mathcal{O}l\}$ $(i.e. \mathcal{O}l^2)$ such that $\tau(x^* \times) \geq 0$, $\tau(y^*) = \tau(x^y) = \tau(y^* x^*)$, $\tau((e_{\alpha}x)^{s}e_{\alpha}x) \xrightarrow{\alpha} \tau(x^* x),$ $\tau((x^*y)^*(xy)) \leq \|x\|^2 \tau(y^* y)$ and $\tau(x^{s}y^{s}) = \tau(x^{s}y)$ for all $x, y \in \mathcal{O}l$ and $s \in (\tau$.

Putting $\mathcal{N} = \{x \in \mathcal{O}\}; \tau(x^*x) = 0\}, \mathcal{N}$ is a two-sided ideal in \mathcal{O} . Let \mathcal{O}° be qoutient algebra of \mathcal{O} (= \mathcal{O}/\mathcal{N}) and for any $x \in \mathcal{O}$ let x^{θ} be the class containing x. Letting (x°, y^{θ}) = $\tau(y^*x)$ for all $x, y \in \mathcal{O}$, \mathcal{O}° is an incomplete Hilbert space. Let fy be competion of \mathcal{O}^{θ} . Putting $x^{\bullet}y^{\theta} = (xy)^{\theta}$, $x^{\flat}y^{\theta} = (yx)^{\theta}$ and $jy^{\theta} = y^{*\theta}$ for all x, $y \in \mathcal{O}$, jx^{*} , x^{\flat} , j, ξ_{y} defines a two-sided representation of \mathcal{O} . Moreover putting $u_{s}y^{\theta} = (y^{s})^{\theta}$ for all $s \in \mathcal{F}$ and $y \in \mathcal{O}$, $\{u_{s}, f_{y}\}$ is a dual unitary representation of \mathcal{G} . For, $(u_{s}y^{\theta}, x^{\theta}) =$ $(y^{s}^{\theta}, x^{\theta}) = \tau(x^{*}y^{s}) = \tau(x^{s^{-1}*}y) = (y^{\theta}, u_{s^{-1}}x^{\theta})$ and $U_{st}y^{\theta} = (y^{st})^{\theta} = u_{t}y^{s\theta} = u_{t}u_{s}y^{\theta}$. Then we have:

(1) $(x^{s})^{\alpha} = U_{s} x^{\alpha} U_{s^{-1}}$ and $(x^{s})^{b} = U_{s} x^{b} U_{s^{-1}}$ for all $x \in \mathcal{O}$ and $s \in \mathcal{O}$.

For, $U_s x^{a} U_{s^{-1}} y^{\theta} = U_s x^{a} (y^{s^{-1}})^{\theta} = U_s (x^{s^{-1}})^{\theta}$ = $(x^{s} y)^{\theta} = x^{s^{a}} y^{\theta}$ and similarly for the latter. Putting W^{a} , W^{b} and $W_{c_{f}}$ W^{*} -algebras generated by $\{x^{a}, x \in \Omega\}$, $\{x^{b}\}$; $x \in \Omega\}$ and $\{u_{s}, s \in G\}$ respectively, $W^{a} = W^{b'}$, $W^{a'} = W^{b}$, $jAj = A^{*}$ for all $A \in W^{a} \cap W^{b}$ and the τ is G-ergodic if and only if $W^{a} \cap W^{b} \cap W_{c_{f}} = \{x, I\}$ (cf. Th.2 and Th.5 of [8]) where for any set F of bounded operators on f_{x} F' is the commutor of F.

Let Ly be the family of all bounded elements v in by (i.e. v belongs to $J_{\mathcal{F}}$ if and only if $\|x^{b}v\| \leq M \|X^{0}\|$ for all cf. [8] and [9]) whose corresponding bounded operators on h be v^{α} and v^{b} such that $v^{\alpha}x^{\theta} = x^{b}v^{\theta}$, $v^{b}x^{\theta} = x^{\alpha}v$. Then $\{x^{\theta}; x \in \mathcal{O}\} \in \mathcal{L}$ and $x^{\theta \cdot \epsilon} = x^{\alpha}$ for all $x \in \partial I$, and the following relations are equivalent each other : for any v_1 and v_2 in $\mathcal{L} = v_1^*$, $v_1^b = v_2^b$ (both as operator) and $v_1 = v_2$ (as point in f_{γ}). Now we can define in La*-involution and a ring product : v^* and $v_i v_j (= v_i^* v_j = v_j^* v_i)$. for all v, v_1 , $v_2 \in \mathcal{L}$ satisfying that $v^* = jv$, $v^{**} = v^{a*}$, $v^{*b} = v^{b*}$ (v^{a*} , v^{b*} are adjoint operators of v^{*} and v^{b}), $jv^{a}j = v^{b*}$, $(v, v_{2})^{a} =$ $v_1^{\alpha} v_2^{\alpha}$, $(v_1 v_2)^b = v_2^b v_1^b$ and $(\lambda_1 v_1 + \lambda_2 v_2)^{d} = \lambda_1 v_1^d + \lambda_2 v_2^d$ (for $d = a \ \sigma \ b$) (cf. p.35) of [8], p.61 of [9], II).

(2) $U_s v \in \mathcal{L}$ and $(U_s v)^{\alpha} = U_s v^{\alpha} U_{s^{-1}}$,