NOTE ON IRREDUCIBLE DECOMPOSITION OF A POSITIVE

LINEAR FUNCTIONAL

By Hisaharu LMEGAKI

In this paper we shall introduce a stationary natural mapping in W^{*} algebra generated by a two-sided representation of a D^{*}-algebra ol with a motion G (e.g. cf. [8]) - a D^{*} algebra O is mean by a normed*-algebra with an approximate identity and a motion G is mean by a group of *auto morphisms on (the motion has been introduced by Segal for C^{*}-algebra). Next, applying the stationary natural mapping and the decomposition theorem of Segal (cf. Th. 4 and its proof of [7]) we shall prove an ergodic decomposition of a G-stationary semitrace of separable a under a restriction which generalizes an irreducible decomposition of finite semitrace (cf. Th. 1 of [9], I), ergodic decomposition of G-stationary trace (cf. Th. 6 of [8]) and ergodic decomposition of invariant regular measure on a compact metric space with a group of homeamorphisms (cf. Th. in App. II of [3] and Th. 7 of [7]).

1. ${ }^{0)}$ Let π be a D^{*}-algebra with an approximate identity $\left\{e_{\alpha}\right\}_{\alpha \varepsilon D}$ and with a motion $G(=\{s\})$ i.e. D is a directed set and $e_{\alpha}^{*}=e_{\alpha}$, $\left\|e_{\alpha}\right\| \leq 1$ for all $\alpha \varepsilon D,\left\|e_{\alpha} x-x\right\| \rightarrow 0$ for all $x \varepsilon O$, and any $s, t \varepsilon G$ are automorphisms on or such that $\left\|^{s}\right\|=\|x\|, x^{s *}=x^{* s}$ and $\left(x^{s}\right)^{t}=x^{s t}$ for all $x \varepsilon$ ol . Let τ be a Gstationary semi-trace of Ω, i.e. τ is a linear functional on the selfadjoint subalgebra generated by $\{x y ; x, y \in \pi\}$ (i.e. σ^{2}) such that $\tau\left(x^{*} x\right) \geqq 0$ $\tau(y x)=\tau(x y)=\tau\left(y^{*} x^{*}\right), \tau\left(\left(e_{\alpha} x\right)^{*} e_{\alpha} x\right) \underset{\alpha}{\longrightarrow} \tau\left(x^{*} x\right)$, $\tau\left((x y)^{*}(x y)\right) \leqq \| x u^{2} \tau\left(y^{*} y\right)$
and $\tau\left(x^{s} y^{s}\right)=\tau(x y)$ for all $x, y \varepsilon \pi$ and $s \varepsilon G$.

Putting $\Omega=\left\{x \varepsilon \Omega ; \tau\left(x^{*} x\right)=0\right\}, \Omega$ is a two-sided ideal in σ. Let a° be qoutient algebra of $\Omega(=\Omega / \Omega)$ and for any $x \varepsilon \circlearrowleft$ let x^{θ} be the class containing x. Letting (x^{θ}, y^{θ}) $=\tau\left(y^{*} x\right)$ for all $x, y \varepsilon \pi, \sigma^{\theta}$ is an incomplete Hilbert space. Let
fy be competion of π^{θ}. Putting $x^{a} y^{\theta}=(x y)^{\theta}, x^{b} y^{\theta}=(y x)^{\theta}$ and $j y^{\theta}=y^{* \theta}$ for all $x, y \in a, \quad\left\{x^{a}, ~\right.$
$\left.x^{b}, j, f\right\}$ defines a two-sided represeritation of π. Noreover putting $u_{s} y^{\theta}=\left(y^{s}\right)^{\theta}$ for all $s \varepsilon G$ and $y \varepsilon a$, $\left\{u_{s}\right.$, fy $\} \quad$ is a dual unitary representation of G. For, $\left(u_{s} y^{\theta}, x^{\theta}\right)=$ $\left(y^{s}, x^{\theta}\right)=\tau\left(x^{*} y^{5}\right)=\tau\left(x^{s^{-1} *} y\right)=\left(y^{\theta}, u_{s^{-1}} x^{\theta}\right)$ and $u_{s t} y^{\theta}=\left(y^{s t}\right)^{\theta}=u_{t} y^{s \theta}=u_{t} u_{s} y^{\theta}$. Then we have:
(1) $\left(x^{5}\right)^{a}=u_{5} x^{a} u_{5}-1$ and $\left(x^{5}\right)^{b}=u_{5} x^{b} u_{5}-1$ for all $x_{\varepsilon} \in \Omega$ and $s \in G$ 。

For, $u_{s} x^{a} u_{s-1} y^{\theta}=u_{s} x^{a}\left(y^{5-1}\right)^{\theta}=u_{5}\left(x y^{5-1}\right)^{\theta}$
$=\left(x^{s} y\right)^{\theta}=x^{s a} y^{\theta}$ and similarly for the latter. Putting W^{a}, W^{b} and W_{G} $w^{*}-a l g e b r a s ~ g e n e r a t e d ~ b y ~\left\{x^{a}, x \in \Omega\right\}$, $\left\{x^{6} ; x \varepsilon O L\right\}$ and $\left\{u_{s}, s \in G\right\}$ respectively, $W^{a}=W^{b}, W^{a}=W^{b}, j A j=A^{*}$ for ${ }_{1}$) all $A \varepsilon W^{a} \cap W^{b}$ and the τ is G-ergodic if and only if $W^{a} \cap W^{b} \cap W_{G}^{\prime}=\{\lambda I\}$ (cf. Th. 2 and Th. 5 of [8]) where for any set F of bounded operators on h_{y} F^{\prime} is the commutor of F.

Let \mathcal{L} be the family of all bounded elements v in of (i.e. v belongs to \mathcal{L} if and only if $\left\|x^{b}\right\|\|M\| x^{\boldsymbol{\theta}} \|$ for all cf. [8] and [9]) whose corresponding bounded operators on b be v^{a} and v^{b} such that $v^{a} x^{\theta}=x^{b} v^{\theta}, v^{b} x^{\theta}=x^{a} v$. Then $\left.\left\{x^{\theta} ; x \varepsilon 0\right\}\right\} \subset \mathcal{L}$ and $x^{\theta \varepsilon}=x^{a}$ for all $x \varepsilon$ or , and the following relations are equivalent each other : for any v_{1} and v_{2} in $\mathcal{L} v_{1}{ }^{a}=v_{2}{ }^{a}$, $v_{1}^{b}=v_{2}^{b}$ (both as operator) and $v_{1}=v_{2}$ (as point in b_{y}). Now we can define in $\mathcal{L} a *$-involution and a ring product : v^{*} and $v_{1} v_{2}\left(=v_{1}^{a} v_{2}=v_{2}^{b} v_{1}\right)$ for all $v, v_{1}, v_{2} \varepsilon \mathscr{L}$ satisfying that $v^{*}=j v, v^{* a}=v^{a *}, v^{* b}=v^{b *}\left(v^{a *}\right.$, $v^{\text {b* }}$ are adjoint operators of v^{a} and $\left.v^{b}\right), j v^{a} j=v^{b *},\left(v_{1} v_{2}\right)^{a}=$ $v_{1}^{a} v_{2}^{a},\left(v_{1} v_{2}\right)^{b}=v_{2}^{b} v_{1}^{b}$ and $\left(\lambda_{1} v_{1}+\lambda_{2} v_{2}\right)^{d}=$ $\lambda_{1} v_{1}^{d}+\lambda_{2} v_{2}^{d}$ (for $d=a$ or b) (cf. $p .35$ of [8], p. 61 of [9], II).
(2) $u_{s} v \varepsilon \dot{L}$ and $\left(u_{s} v\right)^{a}=u_{s} v^{2} u_{s-1}$,

