ON THE MINIMUM MODULUS OF A SUBHARMONIC OR AN ALGEBROID FUNCTION OF $\mu_{*}<1 / 2$

By Hideharu Ueda

0. Introduction. Let $y(z)$ be an N-valued entire algebroid function defined by an irreducible equation

$$
\begin{equation*}
F(z, y)=y^{N}+A_{1}(z) y^{N-1}+\cdots+A_{N}(z)=0 . \tag{1}
\end{equation*}
$$

Denoting the \jmath-th determination of y by y_{j}, we set

$$
M(r, y)=\max _{|z|=r} \max _{1 \leq j \leq N}\left|y_{j}(z)\right|, \quad m^{*}(r, y)=\min _{|z|=r} \max _{1 \leq j \leq N}\left|y_{j}(z)\right| .
$$

Let A be the system $\left(1, A_{1}, \cdots, A_{N}\right)$ and put

$$
B(z)=\max _{1 \leqq j \leqslant N}\left|A_{j}(z)\right|, \quad M(r, B)=\max _{|z|=r} B(z), \quad m^{*}(r, B)=\min _{|z|=r} B(z) .
$$

Then Ozawa [12] showed that

$$
\begin{equation*}
\frac{N \log ^{+} m^{*}(r, y)}{\log M(r, y)} \geqq \frac{\log m^{*}(r, B)+O(1)}{\log M(r, B)+O(1)} . \tag{2}
\end{equation*}
$$

And he obtained the following theorem by making use of Kjellberg's method [10].
Theorem A. Let $y(z)$ be an N-valued entire algebroid function of lower order $\mu, 0 \leqq \mu<1 / 2$. Then

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty} \frac{N^{2} \log m^{*}(r, y)}{\log M(r, y)} \geqq \cos \pi \mu . \tag{3}
\end{equation*}
$$

We can improve his result by two different methods. The first method is due to Baernstein [3]. He proved there

Theorem B. Let f be a nonconstant entire function. Let β and λ be numbers with $0<\lambda<\infty, 0<\beta \leqq \pi, \beta \lambda<\pi$. Then either
(a) there exist arbitrarily large values of r for which the set of θ satisfying $\log \left|f\left(r e^{i \theta}\right)\right|>\cos \beta \lambda \log M(r, f)$ contains an interval of length at least 2β, or else
(b) $\lim _{r \rightarrow \infty} r^{-\lambda} \log M(r, f)$ exists, and is positive or ∞.

