NONLINEAR CONSTRACTIONS IN ABSTRACT SPACES

By Kun-Jen Chung

I. Introduction.

Recently, Eisenfeld J. \& Lakshmikantham V. [4, 5, 6], Bolen J. C. \& Williams B. B. [1], Heikkila S. \& Seikkala S. [7, 8], Chung K. J. [3], Kwapisz M. [10] and Wazéwski T. [11] proved some fixed point theorems in abstract cones which extend and generalize many known results. In this paper, we extend some main results of Boyd D. W. \& Wong J. S.W. [2] to cone-valued metric spaces.

II. Definitions.

Let E be a normed space. A set $K \subset E$ is said to be a cone if (i) K is closed (ii) if $u, v \in K$ then $\alpha u+\beta v \in K$ for all $\alpha, \beta \geqq 0$, (iii) $K \cap(-K)=\{\mathcal{O}\}$ where \mathcal{O} is the zero of the space E, and (iv) $K^{0} \neq \emptyset$ where K^{0} is the interior of K. We say $u \geqq v$ if and only if $u-v \in K$, and $u>v$ if and only if $u-v \in K$ and $u \neq v$. The cone K is said to be strongly normal if there is $\delta>0$ such that if $z=\sum_{i=1}^{n} b_{i} x_{\imath}, x_{i} \in K$, $\left\|x_{i}\right\|=1, \sum_{i=1}^{n} b_{i}=1, b_{i} \geqq 0$ implies $\|z\|>\delta$. The cone K is said to be normal if there is $\delta>0$ such that $\left\|f_{1}+f_{2}\right\|>\delta$ for $f_{1}, f_{2} \in K$ and $\left\|f_{1}\right\|=\left\|f_{2}\right\|=1$. The norm in E is said to be semimonotone if there is a numerical constant M such that $\mathcal{O} \leqq x \leqq y$ implies $\|x\| \leqq M\|y\|$ (where the constant M does not depend on x and y).

Let X be a set and K a cone. A function $d: X \times X \rightarrow K$ is said to be a K metric on X if and only if (i) $d(x, y)=d(y, x)$, (ii) $d(x, y)=\mathcal{O}$ if and only if $x=y$, and (iii) $d(x, y) \leqq d(x, z)+d(z, y)$. A sequence $\left\{x_{n}\right\}$ in a K-metric space X is said to converge to x_{0} in X if and only if for each $u \in K^{0}$ there exists a positive integer N such that $d\left(x_{n}, x_{0}\right) \leqq u$ for $u \geqq N$. A sequence $\left\{x_{n}\right\}$ in X is Cauchy if and only if for each $u \in K^{0}$ there exists a positive integer N such that $d\left(x_{n}, x_{m}\right)$ $\leqq u$ for $n, m \geqq N$. The K-metric space (X, d) is said to be complete if and only if every Cauchy sequence in X converges.

Throughout the rest of this paper we assume that K is strongly normal, that E is a reflexive Banach space, that (X, d) is a complete K-metric space, that $P=\{d(x, y) ; x, y \in X\}$, that \bar{P} denotes the weak closure of P, and that $P_{1}=$ $\{z ; z \in \bar{P}$ and $z \neq \mathcal{O}\}$.

