NONLINEAR CONSTRACTIONS IN ABSTRACT SPACES

By Kun-Jen Chung

I. Introduction.

Recently, Eisenfeld J. & Lakshmikantham V. [4, 5, 6], Bolen J. C. & Williams B. B. [1], Heikkila S. & Seikkala S. [7, 8], Chung K. J. [3], Kwapisz M. [10] and Wazéwski T. [11] proved some fixed point theorems in abstract cones which extend and generalize many known results. In this paper, we extend some main results of Boyd D. W. & Wong J. S. W. [2] to cone-valued metric spaces.

II. Definitions.

Let *E* be a normed space. A set $K \subset E$ is said to be a cone if (i) *K* is closed (ii) if $u, v \in K$ then $\alpha u + \beta v \in K$ for all $\alpha, \beta \geq 0$, (iii) $K \cap (-K) = \{\mathcal{O}\}$ where \mathcal{O} is the zero of the space *E*, and (iv) $K^0 \neq \emptyset$ where K^0 is the interior of *K*. We say $u \geq v$ if and only if $u - v \in K$, and u > v if and only if $u - v \in K$ and $u \neq v$. The cone *K* is said to be strongly normal if there is $\delta > 0$ such that if $z = \sum_{i=1}^{n} b_i x_i, x_i \in K$, $\|x_i\| = 1, \sum_{i=1}^{n} b_i = 1, b_i \geq 0$ implies $\|z\| > \delta$. The cone *K* is said to be normal if there is $\delta > 0$ such that $\|f_1 + f_2\| > \delta$ for $f_1, f_2 \in K$ and $\|f_1\| = \|f_2\| = 1$. The norm in *E* is said to be semimonotone if there is a numerical constant *M* such that $\mathcal{O} \leq x \leq y$ implies $\|x\| \leq M \|y\|$ (where the constant *M* does not depend on *x* and *y*).

Let X be a set and K a cone. A function $d: X \times X \to K$ is said to be a Kmetric on X if and only if (i) d(x, y)=d(y, x), (ii) $d(x, y)=\mathcal{O}$ if and only if x=y, and (iii) $d(x, y) \leq d(x, z)+d(z, y)$. A sequence $\{x_n\}$ in a K-metric space X is said to converge to x_0 in X if and only if for each $u \in K^0$ there exists a positive integer N such that $d(x_n, x_0) \leq u$ for $u \geq N$. A sequence $\{x_n\}$ in X is Cauchy if and only if for each $u \in K^0$ there exists a positive integer N such that $d(x_n, x_m) \leq u$ for $n, m \geq N$. The K-metric space (X, d) is said to be complete if and only if every Cauchy sequence in X converges.

Throughout the rest of this paper we assume that K is strongly normal, that E is a reflexive Banach space, that (X, d) is a complete K-metric space, that $P = \{d(x, y); x, y \in X\}$, that \overline{P} denotes the weak closure of P, and that $P_1 = \{z; z \in \overline{P} \text{ and } z \neq \mathcal{O}\}$.

Received February 27, 1980