An example of self homotopy equivalences

Dedicated to Professor Teiichi Kobayashi on his 60th birthday

By Kouzou TSUKIYAMA

(Received July 9, 1994)

1. Introduction.

Let us consider the principal fibre bundle

with structure group G. G acts on P freely.

Then one can consider the space of (unbased) G-equivariant self-homotopy equivalences of P, which we denote

(1.2) $\operatorname{aut}_{G}(P)$.

We define

(1.3)
$$\mathscr{F}_G(P) = \pi_0(\operatorname{aut}_G(P)).$$

We call this group the group of G-equivariant self-equivalences of the principal fibre bundle (1.1) (cf. [4, 5]).

Also one can consider the space of (unbased) self-homotopy-equivalences of P, which we denote

$$(1.4) aut(P).$$

We define

(1.5)
$$\mathcal{F}(P) = \pi_0(\operatorname{aut}(P)).$$

We call this group the group of self-equivalences of the space P. We have a natural homomorphism from (1.3) to (1.5) forgetting the G-action

(1.6)
$$\mathscr{F}_{G}(P) = \pi_{0}(\operatorname{aut}_{G}(P)) \longrightarrow \pi_{0}(\operatorname{aut}(P)) = \mathscr{F}(P),$$

induced by the inclusion $\operatorname{aut}_{G}(P) \rightarrow \operatorname{aut}(P)$.

In [3, Problem 13, p. 206] the author has raised the following problem in 1988: when is the homomorphism (1.6) a monomorphism.

At this point no examples are known, where this homomorphism is not a monomorphism.