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1. Introduction.

Let us consider the principal fibre bundle

(1.1) $(P, q, B, G)$

with structure group G. $G$ acts on $P$ freely.
Then one can consider the space of (unbased) $G$ -equivariant self-homotopy

equivalences of $P$, which we denote

(1.2) $aut_{G}(P)$ .

We define

(1.3) $\mathscr{F}_{G}(P)=\pi_{0}(aut_{G}(P))$ .

We call this group the group of $G$-equivariant self-equivalences of the
principal fibre bundle (1.1) (cf. [4, 5]).

Also one can consider the space of (unbased) self-homotopy-equivalences of
$P$, which we denote

(1.4) $aut(P)$ .

We define

(1.5) $\mathscr{F}(P)=\pi_{0}(aut(P))$ .

We call this group the group of self-equivalences of the space $P$.
We have a natural homomorphism from (1.3) to (1.5) forgetting the G-action

(1.6) $\mathscr{F}_{G}(P)=\pi_{0}(aut_{G}(P))arrow\pi_{0}(aut(P))=\mathscr{F}(P)$ ,

induced by the inclusion $aut_{G}(P)arrow aut(P)$ .
In [3, Problem 13, p. 206] the author has raised the following problem in

1988: when is the homomorphism (1.6) a monomorphism.
At this point no examples are known, where this homomorphism is not a

monomorphism.


