Complex bordism of the dihedral group

By Nobuaki YAGITA

(Received Aug. 3, 1993) (Revised Apr. 28, 1994)

Introduction.

Let G be a finite group. By a G-U-manifold we mean a weakly complex manifold with a free G-action preserving its weakly complex structure. The group of bordism classes of closed G-U-manifolds is isomorphic to the complex bordism group $MU_*(BG)$ of the classifying space BG [C-F]. If S is a Sylow p-subgroup of G, the inclusion map induces a splitting epimorphism $MU_*(BS)_{(p)}$ $\rightarrow MU_*(BG)_{(p)}$. Hence we need to know first $MU_*(BG)$ for p-groups G. Moreover the Quillen isomorphism $MU_*(-)_{(p)} \cong MU_{*(p)} \otimes_{BP*} BP_*(-)$ shows that we need to know only $BP_*(BG)$.

When G is a cyclic or quaternion group, the graded module associated to the dimensional filtration gr $BP_*(BG)$ is isomorphic to $BP_*\otimes H_*(BG)$ since $H_{even}(BG) \cong 0$ [M]. By Johnson-Wilson [J-W], gr $BP_*(BG)$ is given for an elementary abelian p-group using arguments to generalize Künneth formula. In this paper we determine BP_* -module structure of $BP_*(BG) \mod (p, v_1, \cdots)^2$ for nonabelian groups of the order p^3 . For p=2, the new group is the dihedral group D_4 . The bordism group $BP_*(BD_{2q})$, $q: prime \neq 2$, was studied by Kamata-Minami [K-M] in early seventies.

Recall the Milnor primitive operation $Q_0 = \beta$, $Q_1 = p^1\beta - \beta p^1 (=Sq^2Sq^1 - Sq^1Sq^2)$ for p=2). For the above groups, we can extend the operation Q_1 on $H^*(BG)$ so that $Q_1 | H^{even}(BG) = 0$. Let us write by $H(-; Q_1)$ the homology with the differential Q_1 . Then we know (compare [**T-Y**])

gr
$$BP^*(BG) \cong BP^* \otimes H(H^*(BG); Q_1) \oplus BP^*/(p, v_1) \otimes \operatorname{Im} Q_1$$

since $d_{2p-1}=v_1\otimes Q_1$ is the only non zero differential in the Atiyah-Hirzebruch spectral sequence. The similar fact occurs for the BP_* -homology

gr
$$BP_*(BG) \cong BP_*s^{-1}H(H^*(BG); Q_1) \oplus BP_*/(p, v_1)s^{-1}H^{odd}(BG)$$

where s^{-1} is the shift map which decreases degree by one. Here we use the spectral sequence $E_2^{*,*} = \operatorname{Ext}_{BP*}(BP*(BG), BP*) \Rightarrow BP_*(BG)$. In particular, generators and relations are given explicitly for $BP_*(BD_4)$ in the last section.