# Complex bordism of the dihedral group 

By Nobuaki Yagita

(Received Aug. 3, 1993)
(Revised Apr. 28, 1994)

## Introduction.

Let $G$ be a finite group. By a $G$ - $U$-manifold we mean a weakly complex manifold with a free $G$-action preserving its weakly complex structure. The group of bordism classes of closed $G-U$-manifolds is isomorphic to the complex bordism group $M U_{*}(B G)$ of the classifying space $B G$ [C-F]. If $S$ is a Sylow $p$-subgroup of $G$, the inclusion map induces a splitting epimorphism $M U_{*}(B S)_{(p)}$ $\rightarrow M U_{*}(B G)_{(p)}$. Hence we need to know first $M U_{*}(B G)$ for $p$-groups $G$. Moreover the Quillen isomorphism $M U_{*}(-)_{(p)} \cong M U_{*(p)} \otimes_{B P *} B P_{*}(-)$ shows that we need to know only $B P_{*}(B G)$.

When $G$ is a cyclic or quaternion group, the graded module associated to the dimensional filtration $\operatorname{gr} B P_{*}(B G)$ is isomorphic to $B P_{*} \otimes H_{*}(B G)$ since $H_{\text {even }}(B G)$ $\cong 0[\mathbf{M}]$. By Johnson-Wilson [J-W], gr $B P_{*}(B G)$ is given for an elementary abelian $p$-group using arguments to generalize Künneth formula. In this paper we determine $B P_{*}$-module structure of $B P_{*}(B G) \bmod \left(p, v_{1}, \cdots\right)^{2}$ for nonabelian groups of the order $p^{3}$. For $p=2$, the new group is the dihedral group $D_{4}$. The bordism group $B P_{*}\left(B D_{2 q}\right), q$ : prime $\neq 2$, was studied by Kamata-Minami [K-M] in early seventies.

Recall the Milnor primitive operation $Q_{0}=\beta, Q_{1}=p^{1} \beta-\beta p^{1}\left(=S q^{2} S q^{1}-S q^{1} S q^{2}\right.$ for $p=2$ ). For the above groups, we can extend the operation $Q_{1}$ on $H^{*}(B G)$ so that $Q_{1} \mid H^{\text {even }}(B G)=0$. Let us write by $H\left(-; Q_{1}\right)$ the homology with the differential $Q_{1}$. Then we know (compare [T-Y])

$$
\operatorname{gr} B P^{*}(B G) \cong B P^{*} \otimes H\left(H^{*}(B G) ; Q_{1}\right) \oplus B P^{*} /\left(p, v_{1}\right) \otimes \operatorname{Im} Q_{1}
$$

since $d_{2 p-1}=v_{1} \otimes Q_{1}$ is the only non zero differential in the Atiyah-Hirzebruch spectral sequence. The similar fact occurs for the $B P_{*}$-homology

$$
\operatorname{gr} B P_{*}(B G) \cong B P_{*} s^{-1} H\left(H^{*}(B G) ; Q_{1}\right) \oplus B P_{*} /\left(p, v_{1}\right) s^{-1} H^{o d d}(B G)
$$

where $s^{-1}$ is the shift map which decreases degree by one. Here we use the spectral sequence $E_{2}^{* * *}=\operatorname{Ext}_{B P *}\left(B P^{*}(B G), B P^{*}\right) \Rightarrow B P_{*}(B G)$. In particular, generators and relations are given explicitely for $B P_{*}\left(B D_{4}\right)$ in the last section.

