An exact sequence related to Adams-Novikov E_{2}-terms of a cofibering

By Mizuho Hikida and Katsumi Shimomura

(Received April 23, 1992)
(Revised April 14, 1993)

§:1. Introduction.

Let E be a ring spectrum. The E-Adams spectral sequence with computable E_{2}-term is a useful tool for computing stable homotopy groups of spectra. We concern here about the $B P$-Adams spectral sequence $E_{2}=\operatorname{Ext}_{B P * B P}^{\delta,}\left(B P_{*}\right.$, $\left.B P_{*}(X)\right) \Rightarrow \pi_{*-s}(X)$, in which $B P$ is the Brown-Peterson spectrum at a prime p with the coefficient ring $B P_{*}=\pi_{*}(B P)=\boldsymbol{Z}_{(p)}\left[v_{1}, v_{2}, \cdots\right]$. For a spectrum X, we especially concern for the sphere spectrum S^{0} and the Toda-Smith spectrum $V(n)$. In their paper [8], Miller, Ravenel, and Wilson have introduced the chromatic spectral sequence to compute the E_{2}-term of the above spectral sequence. Let $I_{i}=\left(p, v_{1}, \cdots, v_{i-1}\right)$ be the invariant prime ideal of $B P_{*}$. They have defined $B P_{*} B P$-comodules A_{i}^{j} and $L A_{i}^{j}$ by taking $A_{i}^{0}=\pi_{*}(B P) / I_{i}, L A_{i}^{j}=v_{i+j}^{-1} A_{i}^{j}$ and the short exact sequences $0 \rightarrow A_{i}^{j} \rightarrow L A_{i}^{j} \rightarrow A_{i}^{j+1} \rightarrow 0$, inductively. The chromatic spectral sequence converging to $\operatorname{Ext}_{B P_{* B P}}^{s}\left(B P_{*}, B P_{*} / I_{i}\right)$ is given by the chromatic resolution

$$
0 \longrightarrow B P_{*} / I_{i} \longrightarrow L A_{i}^{0} \longrightarrow L A_{i}^{1} \longrightarrow \cdots
$$

associated to the short exact sequence above. Then they have defined "the universal Greek letter map" $\eta: \operatorname{Ext}_{B P * B P}^{s}\left(B P_{*}, A_{i}^{j}\right) \rightarrow \operatorname{Ext}_{B P * * P}^{s+j}\left(B P_{*}, B P_{*} / I_{i}\right)$ by taking the composition of the coboundary homomorphisms, and the Greek letter elements to be the image of η.

In this paper we also consider the Johnson-Wilson spectrum $E(n)$ for $n \geqq 0$ with $E(n)_{*}=\boldsymbol{Z}_{(p)}\left[v_{1}, v_{2}, \cdots, v_{n}, v_{n}^{-1}\right]$. Define $E(n)_{*} E(n)$-comodules B_{i}^{j} and $L B_{i}^{j}$ in the same way as the case of $B P$ by replacing the first step of the induction by $B_{i}^{0}=E(n)_{*} / I_{i}$ (see §3). Throughout the paper, we use the following notation for the Hopf algebroids appeared above:
and

$$
(A, \Gamma)=\left(B P_{*}, B P_{*} B P\right)
$$

$$
(B, \Sigma)=\left(E(n)_{*}, E(n)_{*} E(n)=E(n)_{*} \otimes_{A} \Gamma \otimes_{A} E(n)_{*}\right) .
$$

Let $L_{n} X$ (resp. $C_{n} X$) for a spectrum X denote the Bousfield localization

