Notes on the mean value property for certain degenerate elliptic operators

By Toshio HORIUCHI

(Received March 17, 1992) (Revised Oct. 20, 1992)

Introduction.

The purpose of this paper is to study the mean value property and its applications to a certain class of degenerate elliptic operators. We shall treat the operators L_{α} defined by

$$(0.1) L_{\alpha}(x, \partial_{x}) = -x_{n}\Delta - \alpha \partial_{x_{n}} \text{for } x = (x', x_{n}) \in \mathbb{R}^{n}_{+},$$

where α is a real parameter and \mathbf{R}_{+}^{n} is the Euclidian halfspace defined by $\{x = (x', x_n) | x' \in \mathbf{R}^{n-1}, x_n > 0\}$.

Let Ω be a domain of \mathbb{R}^n_+ and we set

$$egin{aligned} & \underline{\mathcal{Q}} = \mathcal{Q} \cup (\partial \mathcal{Q} \cap \partial R_+^n) \,, \ & \partial \mathcal{Q}^i = \partial \mathcal{Q} \! \setminus \! \partial R_+^n \,. \end{aligned}$$

By $C^{0}(\Omega)$ and $C^{0}(\Omega)$ we denote the sets of all continuous functions on Ω and Ω respectively.

With the operators L_{α} , we shall associate the modified mean value functions $M_{\alpha,\rho}u(a)$ of $u\in C^0(\Omega)$ (resp. $u\in C^0(\Omega)$) at a point $a\in \Omega$ (resp. $a\in \Omega$). More precisely

DEFINITION 0.1. Let $a=(a', a_n)$ be an arbitrary point in Ω (resp. Ω), and let α and ρ be arbitrary positive numbers satisfying $\rho < \operatorname{dist}(a, \partial \Omega)$ (resp. $\rho < \operatorname{dist}(a, \partial \Omega^i)$). For $u \in C^0(\Omega)$ (resp. $u \in C^0(\Omega)$) we set

$$(0.3) M_{\alpha, \rho} u(a)$$

$$= C(\alpha) \rho^{1-n-\alpha} \int_0^1 \{s(1-s)\}^{\alpha/2-1} ds \int_{\partial B_0^+} x_n^{\alpha} u(x'+a', \gamma(x_n, a_n, s)) dS_x$$

where

This research was partially supported by Grant-in-Aid for Scientific Research (No. 04854005), Ministry of Education, Science and Culture.