Minimum index for subfactors and entropy. II

By Fumio HIAI

(Received June 18, 1990)

Introduction.

V. Jones [22] constructed his celebrated theory on index for type II₁ factors by using the notion of coupling constant. Kosaki [25] extended Jones' index theory to that for conditional expectations between arbitrary factors based on Connes' spatial theory [9] and Haagerup's theory on operator valued weights [17]. For von Neumann algebras $M \supseteq N$, let $\mathcal{C}(M, N)$ denote the set of all faithful normal conditional expectations from M onto N, and $\mathcal{C}(M)$ the set of all faithful normal states on M. When $M \supseteq N$ is a pair of factor and subfactor with $\mathcal{E}(M, N) \neq \emptyset$, Kosaki's index Index E varies depending on $E \in \mathcal{E}(M, N)$. But it was shown in [18] (independently by Longo [27]) that if Index $E < \infty$ for some $E \in \mathcal{E}(M, N)$, then there exists a unique $E_0 \in \mathcal{E}(M, N)$ which minimizes Index E for $E \in \mathcal{E}(M, N)$. So we can define the minimum index $[M:N]_0 =$ Index E_0 for a pair $M \supseteq N$.

Starting with the von Neumann entropy, we have at present several kinds of entropies in noncommutative probability theory (see [3, 4, 10, 11, 12, 29, 41, 43] for instance). Pimsner and Popa [33] exactly estimated the entropy H(M|N) of a type II₁ factor M relative to its subfactor N in terms of Jones' index. This entropy extends the conditional entropy in commutative probability theory, and was first used by Connes and Størmer [12] to study the Kolmogorov-Sinai entropy of automorphisms of finite von Neumann algebras. As the natural generalization of H(M|N) for finite von Neumann algebras, Connes [10] defined the entropy $H_{\omega}(M|N)$ for general von Neumann algebras $M \supseteq N$ and a normal state φ on M by using the notion of relative entropy. Here the relative entropy of normal positive functionals was first studied by Umegaki [41] in the semifinite case, and was extended by Araki [3, 4] to the general case. On the other hand, taking account of Pimsner and Popa's estimate of H(M|N), we introduced in [19] another entropy $K_{\omega}(M|N)$ of a von Neumann algebra M relative to its subalgebra N and $\varphi \in \mathcal{E}(M)$ such that $E \in \mathcal{E}(M, N)$ with $\varphi \circ E = \varphi$ exists. For factors $M \supseteq N$ and $E \in \mathcal{E}(M, N)$, we write $K_E(M|N)$ for $K_{\varphi}(M|N)$

This research was partially supported by Grant-in-Aid for Scientific Research (No. 01540091), Ministry of Education, Science and Culture.