Vector valued invariants of prehomogeneous vector spaces By Akihiko GYOJA (Received Jan. 1990) ## 0. Introduction. - **0.1.** Let G be a finite group acting linearly on a finite dimensional vector space V over a finite field F_q . Let $\{v_0, \cdots, v_n\}$ be a complete set of representatives of V/G, $V_i = Gv_i$, $K_i = Z_G(v_i)$, $R: G \rightarrow GL(M)$ a complex representation, and M_i the set of K_i -fixed vectors in M. For each $m \in M_i$, there exists one and only one M-valued function $R_{i,m}$ on V_i such that $R_{i,m}(v_i) = m$ and $R_{i,m}(gv) = R(g)R_{i,m}(v)$ for $g \in G$ and $v \in V_i$. We extend $R_{i,m}$ by zero to the whole space V. - **0.2.** Our first problem is to know if the vector valued functions $R_{i,m}$ are similar in property to the complex powers of a relatively invariant polynomial function on a prehomogeneous vector space over the complex or real number field. (A rational representation of an algebraic group is called a prehomogeneous vector space, if the representation space has a Zariski open orbit.) Let V^{\vee} be the dual G-module of V, and define, in the same way as above, $\{v_0^{\vee}, \cdots, v_{n'}^{\vee}\}$, M_i' , and M-valued functions $R_{i',m'}'$ $(1 \le i' \le n', m' \in M_{i'}')$ such that $R_{i',m'}'(gv^{\vee}) = R(g)R_{i',m'}'(v^{\vee})$ for $g \in G$ and $v^{\vee} \in V^{\vee}$. As is easily seen, the Fourier transform of $R_{i,m}$ is a linear combination of these $R_{i',m'}'$ s. Provisionally in the introduction, let us assume that M_0 and M_0' are one dimensional and spanned by m_0 and m_0' respectively. Then the Fourier transform of R_{0,m_0} is a linear combination of $R_{0,m_0'}'$ and $\{R_{i',m'}' \mid 1 \le i' \le n', m' \in M_{i'}'\}$. Hence if m_0 and m_0' are given, the coefficient c(R) of $R_{0,m_0'}'$ is uniquely determined. Our first problem is, more precisely, the evaluation of the coefficient c(R). See (2.4) and (3.4) for our result, where we calculate the value of c(R) for some examples. In many cases, we can say from the value of c(R) that the Fourier transform of R_{0, m_0} is, in fact, equal to $c(R)R'_{0, m_0}$. See (2.6). **0.3.** Our second problem is to understand character sum analogues of the Fourier transforms of complex powers of relative invariants of non-reductive prehomogeneous vector spaces in terms of the vector valued relative invariants