Mode-conversion of the scattering kernel for the elastic wave equation

By Mishio KAWASHITA and Hideo SOGA

(Received Nov. 17, 1989)

§ 0. Introduction.

Let Ω be an exterior domain in \mathbb{R}^3 with a smooth and compact boundary $\partial\Omega$. We consider the isotropic elastic wave equation

$$\begin{cases} Lu \equiv (A(\partial_x) - \partial_t^2)u = 0 & \text{in } \mathbf{R} \times \Omega, \\ u(t, x) = 0 & \text{on } \mathbf{R} \times \partial \Omega, \\ u(0, x) = f_0, \quad \partial_t u(0, x) = f_1 & \text{on } \Omega. \end{cases}$$

Here $u=t(u_1, u_2, u_3)$ is the displacement vector and $A(\partial_x)$ is of the form

$$A(\partial_x)u = \mu \Delta u + (\lambda + \mu) \operatorname{grad}(\operatorname{div} u)$$
.

We assume that the Lamé constants λ and μ satisfy

$$\lambda + \frac{2}{3}\mu > 0$$
 and $\mu > 0$.

Then, as is shown in Yamamoto [13] and Shibata and Soga [8], we can develop the scattering theory for (0.1) in a similar way to that in Lax and Phillips [6]. Let $k_-(s, \omega)$ and $k_+(s, \omega) \in L^2(\mathbf{R} \times S^2)$ (= $\{L^2(\mathbf{R} \times S^2)\}^3$) be the incoming and outgoing translation representations of the initial data $f = (f_0, f_1)$ respectively. The mapping $S: k_- \to k_+$ is called the scattering operator, which is a unitary operator from $L^2(\mathbf{R} \times S^2)$ to itself. The scattering operator is represented with a distribution kernel $S(s, \theta, \omega)$ called the scattering kernel:

$$(Sk_{-})(s, \theta) = \iint_{\mathbf{R} \times S^2} S(s-t, \theta, \boldsymbol{\omega}) k_{-}(t, \boldsymbol{\omega}) dt d\boldsymbol{\omega}.$$

Note that the scattering kernel $S(s, \theta, \omega)$ is a 3×3 -matrix whose components are smooth functions in θ and ω with the value of the distribution in s. The purpose of the present paper is to study singularities of the scattering kernel $S(s, \theta, \omega)$.

The characteristic matrix $A(\xi)$ of the operator $A(\partial_x)$ has the eigenvalues $C_L^2|\xi|^2$ and $C_T^2|\xi|^2$, where

$$C_L = (\lambda + 2\mu)^{1/2}, \qquad C_T = \mu^{1/2}.$$