Extension of minimal immersions of spheres into spheres

By Yosio MUTO

(Received April 27, 1988) (Revised Feb. 22, 1989)

§ 1. Introduction.

The purpose of the present study is to get isometric minimal immersions of $S^{m+k}(1)$ into spheres which are extensions of isometric minimal immersions of $S^m(1)$ into spheres and to find some properties of such immersions.

Let $S^{n-1}(r)$ denote the sphere of radius r centered at the origin in \mathbb{R}^n . An isometric minimal immersion $f_{m,s}: S^m(1) \to S^{n-1}(r)$ is expressed by

$$f_{m,s}(u) = \sum_{A=1}^{n} f^{A}(u)\tilde{e}_{A}$$

where $\{\tilde{e}_1, \dots, \tilde{e}_n\}$ is an orthonormal basis of \mathbb{R}^n and $u \in S^m(1)$. By a theorem of Takahashi [7] f^A $(A=1, \dots, n)$ are spherical harmonics of degree s,

$$\Delta f^A = \lambda_s f^A$$
, $\lambda_s = s(s+m-1)$.

Let $\{e_1, \dots, e_{m+1}\}$ be an orthonormal basis of \mathbf{R}^{m+1} and $S^m(1)$ be the unit sphere in \mathbf{R}^{m+1} so that we can put $u=u^ie_i$ using summation convention. To an eigenfunction f of Δ with $\Delta f = \lambda_s f$, there corresponds a unique harmonic polynomial

$$F = F_{i_1 \cdots i_s} x^{i_1} \cdots x^{i_s}$$

of degree s such that

$$f(u) = F_{i_1 \dots i_s} u^{i_1} \dots u^{i_s}.$$

The harmonic polynomial F then is viewed as a symmetric harmonic tensor of degree s, satisfying

- i) $F(v_1, \dots, v_s)$ is symmetric in v_1, \dots, v_s
- ii) $\sum_{i} F(e_i, e_i, v_3, \dots, v_s) = 0$

where v_1 , \cdots , $v_s \in \mathbb{R}^{m+1}$.

Thus, to an isometric minimal immersion $f_{m,s}$ there corresponds a set of n symmetric harmonic tensors $\{F^1, \dots, F^n\}$. Let V(m, s) denote the vector space of symmetric harmonic tensors of degree s on \mathbb{R}^{m+1} . Then we know that $\dim V(m, s) = n(m, s)$ is given by

$$n(m, s) = (2s+m-1)(s+m-2)!/(s!(m-1)!),$$