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\S 0. Introduction.

This paper is concerned with classification of homotopy representations (up

to G-homotopy). Let $G$ be a finite group. A homotopy representation $X$ of $G$ is
a finite dimensional G-CW-complex such that for each subgroup $H$ of $G$ , the H-
fixed point set $X^{H}$ is homotopy equivalent to a sphere $S^{m}$ of dimension $m$ which
is equal to dim $X^{H}$ , or the empty set. T. tom Dieck and T. Petrie first introduced
homotopy representations in [6] and studied their stable theory. Recently
E. Laitinen studied the unstable theory of homotopy representations in [8] and
showed that two homotopy representations $X$ and $Y$ are G-homotopy equivalent
if and only if their dimension functions are equal and a certain invariant $D_{n}(X, Y)$

in the unstable Picard group $Pic_{n}(G)$ vanishes, where $n=DimX=DimY$.
T. tom Dieck studied the dimension functions of homotopy representations

in [2]. In particular, he showed that the dimension function of a homotopy
representation of a $P$-group $G$ is equal to that of some linear G-sphere. (See

also [7].) This result implies that the dimension functions of homotopy repre-
sentations of a $P$-group are classified by the representation theory.

The purpose of this paper is to investigate the number $Num(G, n)$ of G-
homotopy types of homotopy representations with the same dimension function $n$ .

In Section 1, we show that the number $Num(G, n)$ is at most the order of
$Pic_{n}(G)$ (Proposition 1.7). In Section 2, we show that the number $Num(G, n)$ is
equal to the order of $Pic_{n}(G)$ under certain hypotheses (Theorem 2.1). In par-
ticular, if $G$ is a nilpotent group of odd order, then the number $Num(G, n)$ is
equal to the order of $Pic_{n}(G)$ (Corollary 2.7). In Section 3, we compute the
order of $Pic_{n}(G)$ in general (Theorem 3.6). If a homotopy representation $X$ has
a G-homotopy type of a finite G-CW-complex, we call it finite. In Section 4,
we discuss a similar problem for finite homotopy representations. However it
seems difficult to compute the number Num $f(G, n)$ of G-homotopy types of
finite homotopy representations with the same dimension function $n$ because of
complexity of the finiteness obstruction. When $G$ is an abelian group of odd
order, the number $Num_{f}(G, n)$ is described by using the Swan homomorphisms


