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\S 1. Introduction.

Recently, Ihara [5] proved a natural inequality for an infinite unramified
Galois extension $M/K$ of a global field, which gives an upper bound for some
‘weighted cardinality’ of the set $T$ of those primes of $K$ that decompose almost
completely in $M/K$ :

$(*)$ $\sum_{P\in T}\alpha_{P}\leqq\{$

$\frac{1}{2}$ log $D_{K}$ (in the number field case, assuming GRH),

$(g-1)\log q$ (in the function field case).

Here, $\alpha_{P}$ is some positive ’weight’ of a prime $P$ of $K$ and GRH means the Gen-
eralized Riemann Hypothesis for all $K’$ with $K\subset K’\subset M,$ $[K’ : K]<\infty$ (for details
see \S 2). In the function field case there are cases such that the equality in $(*)$

holds ([2], cf. also [1], [3]). However, in the number field case such cases are
still unknown. Therefore, Ihara considered $\rho(M/K)$ , the ratio of two sides of
$(*),$ $i$ . $e$ .

$\rho(M/K)=\sum_{P}\alpha_{P}/(\frac{1}{2}$ log $D_{K})$ ,

and gave an example such that $\rho(M/K)\geqq 0.7517\cdots$ . The lower bound of this
$\rho(M/K)$ is fairly smaller than 1. In this paper, we shall give a way to con-
struct examples of $M/K$ with large $\rho(M/K)$ , considering some class field tower
with many finite primes decomposing completely. Our maximum lower bound
obtained in this way is 0.9115 $\cdots,$

$i$ . $e$ . we obtain $M/K$ such that

$\rho(M/K)\geqq 0.9115\cdots$ .

This value is much nearer to 1 than that given by Ihara’s examPle. Therefore,
this value seems to be helpful for further study. This value is achieved by the
following $K$ and $M$ :

$K$ : the composite field of the absolute class field of $Q(\sqrt{15377})$

and $Q(\sqrt{-57}15377)$ ;


