Ricci curvature, geodesics and some geometric properties of Riemannian manifolds with boundary

By Atsushi KASUE

(Received Sept. 14, 1981)

Introduction.

Let M be a connected, complete Riemannian manifold with (possibly empty) boundary ∂M . Cheeger and Gromoll proved in [4] that if ∂M is empty and the Ricci curvature of M is nonnegative, then the Busemann function with respect to any ray is superharmonic on M. From this result, they showed that M as above is the isometric product $N \times \mathbb{R}^k$ ($k \ge 0$), where N contains no lines and \mathbb{R}^k has its standard flat metric. They also proved in [5] that if M is a convex subset with boundary ∂M in a positively curved manifold, then the distance function to ∂M is concave on M. Later, making use of this result, Burago and Zalgaller obtained in [3] a theorem on such a manifold M saying that

(1) the number of components of ∂M is not greater than 2,

(2) if there are two components Γ_1 and Γ_2 of ∂M , then M is isometric to the direct product $[0, a] \times \Gamma_1$,

(3) if ∂M is connected and compact, but M is noncompact, then M is isometric to the direct product $[0, \infty) \times \partial M$.

Recently we have obtained in [9] a sharp and general Laplacian comparison theorem, which tells us the behavior of the Laplacian of a distance function or a Busemann function on M in terms of the Ricci curvature of M. In this paper, using our comparison theorem, we shall study Riemannian manifolds with boundary and obtain, roughly speaking, a generalization of the above result by Burago and Zalgaller from the viewpoint of Ricci curvature.

We shall now describe our main theorems. Let M be a connected, complete Riemannian manifold of dimension m with smooth boundary ∂M . We call Mcomplete if it is complete as a metric space with the distance induced by the Riemannian metric of M. Let R and Λ be two real numbers. We say M is of class (R, Λ) if the Ricci curvature of $M \ge (m-1)R$ and (the trace of $S_{\xi}) \le$ $(m-1)\Lambda$ for any unit inner normal vector field ξ of ∂M , where S_{ξ} is the second fundamental form of ∂M with respect to ξ (i.e., $\langle S_{\xi}X, Y \rangle = \langle \nabla_X \xi, Y \rangle$). We write i(M) for the inradius of M (i.e., $i(M) = \sup\{\operatorname{dis}_M(x, \partial M): x \in M\} \le +\infty$). Let f