Hamiltonian circuits on simple 3-polytopes with up to 30 vertices

By Haruko Okamura

(Received Jan. 11, 1979)
(Revised July 1, 1981)

§ 1. Introduction.

Klee in [5] asked what is the minimun number, n, of vertices for a simple 3-polytope with no Hamiltonian circuit, that is, no closed path on the edges of the polytope which goes through each vertex exactly once. The smallest known non-Hamiltonian simple 3 -polytope has 38 vertices (see p. 359 in [5]), so $n \leqq 38$. Lederberg [6] proved $n \geqq 20$, Butler [2] and Goodey [4] proved $n \geqq 24$, Barnette and Wegner [1] proved $n \geqq 28$. In this paper we show $n \geqq 32$.

Theorem. Every simple 3-polytope of order 30 or less is Hamiltonian.
By Steinitz's theorem [5, p. 235] a graph is the graph of a simple 3-polytope if and only if it is planar, 3 -connected and 3 -valent. A set S of edges of a graph is called a cut if the removal of these edges separates G into two connected components and no proper subset of S has this property. If the cardinality of the cut is k it will be called a k-cut. The components separated by a k-cut are called k-pieces. A cut will be called non-trivial if each of its k pieces contains a circuit, trivial otherwise. A non-trivial k-cut will be called essential if each of its k-pieces contains more than k vertices, non-essential otherwise. A graph will be called cyclically k-connected if every l-cut with $l<k$ is trivial, it will be called cyclically exactly k-connected if it is cyclically k-connected but not cyclically $(k+1)$-connected. The order of a graph G will be denoted by $|G|$.

§ 2. Preliminaries.

In this section we prepare some lemmas. By [2] and [4] we have Lemma 1.
Lemma 1. In any simple 3 -polytope of order 22 or less each edge is used by some Hamiltonian circuit.

By [3] we have Lemma 2.
Lemma 2. Any minimal non-Hamiltonian simple 3-polytope of order 34 or less is cyclically exactly 4-connected and has no essential 4-cut.

