Complexes and L-structures

By Keiô Nagami and Kôichi Tsuda

(Received Feb. 4, 1980)

§ 0. Introduction.

The purpose of this paper is to study the simplicial complex K with Whitehead topology from the point of view of L-structures. It will be shown that the capacity of K to admit L-structures decreases as the dimension of K increases. As a consequence we know that there is a gap between the class of M_{1}-spaces and the class of weak L-spaces. Throughout the paper K is a simplicial complex with Whitehead topology and simplexes of K are so-called open ones. K^{n} denotes the n-section of K. As for terminology refer to the first author [3], [4] and [5].

§ 1. K with $\operatorname{dim} K \leqq 2$.

1.1. Theorem. If $\operatorname{dim} K \leqq 1$, then K is an L-space.

Proof. When $\operatorname{dim} K \leqq 0, K$ is discrete and metrizable. Consider the case when $\operatorname{dim} K=1$. Let H be an arbitrary closed set of K. Let $\left\{s_{\alpha}: \alpha \in A\right\}$ be the set of 1 -simplexes of K. Let U be an open set of K with

$$
K^{0}-H \subset U \subset \bar{U} \subset K-H .
$$

For each $\alpha \in A$, let \mathcal{U}_{α} be an approaching anti-cover of $\left(H \cap \bar{s}_{\alpha}\right) \cup \partial s_{\alpha}$ in \bar{s}_{α}. Set

$$
U=\left(\cup\left\{U_{\alpha}: \alpha \in A\right\}\right) \cup\{U\} .
$$

Then \mathcal{U} is as can easily be seen an approaching anti-cover of H in K. That completes the proof.
1.2. Theorem. Let K be the 2 -section of an infinite full complex. Then K is not an L-space.

Proof. Let s be a 1 -simplex of K and $\left\{s_{i}: i=1,2, \cdots\right\}$ a sequence of distinct 2-simplexes of K having s as their common face. Let p be an edge point of s and $\left\{p_{i}\right\}$ a sequence of points of s with $\lim p_{i}=p$. Let Q be an arbitrary anti-cover of $\{p\}$. Choose $U_{i} \in \mathcal{U}$ with $p_{i} \in U_{i}$. Since $U_{i} \cap s_{i} \neq \emptyset$ for any i, we can pick a point $q_{i} \in U_{i} \cap s_{i}$ for each i. Set

$$
Z=\left\{q_{i}: i=1,2, \cdots\right\} .
$$

