Remarks on a geometric constant of Yau

By David HOFFMAN

(Received April 26, 1978) (Revised Sept. 28, 1978)

§1. Introduction.

Let M be a compact *m*-dimensional Riemannian manifold with or without boundary. In [2], Yau defines an isoperimetric constant I(M) as follows: $I(M) = \inf \frac{\operatorname{Vol}(\partial M_1 \cap \partial M_2)}{\min(\operatorname{Vol} M_1, \operatorname{Vol} M_2)}$, the infimum being taken over all decompositions $M = M_1 \cup M_2$ with $\operatorname{Vol}(M_1 \cap M_2) = 0$. By standard methods, Yau shows that

(1)
$$I(M) = \inf\left\{ \int_{M} |\nabla f| / \inf_{\beta \in \mathbb{R}} \int_{M} |f - \beta| \ \Big| \ f \in C^{1}(M) \right\}.$$

I(M) is useful for estimating eigenvalues of the Laplacian from below. In this note we wish to investigate and clarify a geometric quantity ω associated to M (and defined below) that arises in trying to estimate I(M). At each $p \in M$, consider a subset \mathcal{R} of $T_p^1 M$ with the following property: The set of all points of M reachable by minimal geodesics from p with initial direction in \mathcal{R} has volume equal to or greater than VolM/2. Then ω_p is equal to the infimum of the (m-1)-dimensional areas of all such \mathcal{R} and $\omega = \inf_{p \in M} \omega_p$. Let $\alpha_{m-1} = (m-1)$ -dimensional area of $S^{m-1} \subset \mathbb{R}^m$. Clearly $0 < \omega/\alpha_{m-1} \le 1/2$ and for $M = S^m$, $\omega = \omega_p = \alpha_{m-1}/2$. One estimate we make is contained in the following proposition.

PROPOSITON 1. Suppose the Ricci curvature of M is equal to or greater than $(m-1)a^2$. Then for all $p \in M$

$$\omega_p/\alpha_{m-1} \geq \omega/\alpha_{m-1} \geq (1/2)V(a, d(M))^{-1} \cdot \operatorname{Vol}(M).$$

Here $V(a, \rho)$ is the volume of the solid ball of radius ρ in the space form of constant curvature a^2 , (a may be a real positive or a purely imaginary number) and d(M) is the diameter of M. The proof of Proposition 1 follows in §3.

§2. To begin with, for $p \in M$ let (r, θ) denote polar coordinates on T_pM ; $\theta \in T_p^1M$, $r \ge 0$. For each $\theta \in T_p^1M$, let $r(\theta)$ be the distance to the cut locus of

Partially supported by NSF Grant MCS-7606752.