Remarks on a geometric constant of Yau

By David Hoffman

(Received April 26, 1978)
(Revised Sept. 28, 1978)

§ 1. Introduction.

Let M be a compact m-dimensional Riemannian manifold with or without boundary. In [2], Yau defines an isoperimetric constant $I(M)$ as follows: $I(M)=\inf \frac{\operatorname{Vol}\left(\partial M_{1} \cap \partial M_{2}\right)}{\min \left(\operatorname{Vol} M_{1}, \operatorname{Vol} M_{2}\right)}$, the infimum being taken over all decompositions $M=M_{1} \cup M_{2}$ with $\operatorname{Vol}\left(M_{1} \cap M_{2}\right)=0$. By standard methods, Yau shows that

$$
\begin{equation*}
I(M)=\inf \left\{\int_{M}|\nabla f| / \inf _{\beta \in R} \int_{M}|f-\beta| \mid f \in C^{1}(M)\right\} . \tag{1}
\end{equation*}
$$

$I(M)$ is useful for estimating eigenvalues of the Laplacian from below. In this note we wish to investigate and clarify a geometric quantity ω associated to M (and defined below) that arises in trying to estimate $I(M)$. At each $p \in M$, consider a subset \mathcal{R} of $T_{p}^{1} M$ with the following property: The set of all points of M reachable by minimal geodesics from p with initial direction in \mathscr{R} has volume equal to or greater than $\operatorname{Vol} M / 2$. Then ω_{p} is equal to the infimum of the ($m-1$)-dimensional areas of all such \mathcal{R} and $\omega=\inf _{p \in \mathcal{M}} \omega_{p}$. Let $\alpha_{m-1}=(\mathrm{m}-1)$-dimensional area of $S^{m-1} \subset \boldsymbol{R}^{m}$. Clearly $0<\omega / \alpha_{m-1} \leqq 1 / 2$ and for $M=S^{m}, \omega=\omega_{p}=\alpha_{m-1} / 2$. One estimate we make is contained in the following proposition.

Propositon 1. Suppose the Ricci curvature of M is equal to or greater than $(m-1) a^{2}$. Then for all $p \in M$

$$
\omega_{p} / \alpha_{m-1} \geqq \omega / \alpha_{m-1} \geqq(1 / 2) V(a, d(M))^{-1} \cdot \operatorname{Vol}(M) .
$$

Here $V(a, \rho)$ is the volume of the solid ball of radius ρ in the space form of constant curvature a^{2}, (a may be a real positive or a purely imaginary number) and $d(M)$ is the diameter of M. The proof of Proposition 1 follows in $\S 3$.
§ 2. To begin with, for $p \in M$ let (r, θ) denote polar coordinates on $T_{p} M$; $\theta \in T_{p}^{1} M, r \geqq 0$. For each $\theta \in T_{p}^{1} M$, let $r(\theta)$ be the distance to the cut locus of

[^0]
[^0]: Partially supported by NSF Grant MCS-7606752.

