Rate of decay of local energy and wave operators for symmetric systems

By Minoru MURATA

(Received Sept. 17, 1977) (Revised Aug. 28, 1978)

§1. Introduction.

A large class of wave propagation phenomena of classical physics and quantum mechanics are governed by "symmetric systems" of partial differential equations of the form

(1.1)
$$\frac{1}{i} \frac{\partial u}{\partial t} = M(x)(P(D) + \sum_{j=1}^{K} q_j(x)Q_j(D))u.$$

Here $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, $D = -i\partial/\partial x$, u(x, t) is a \mathbb{C}^m -valued function, $P(D) + \sum_{j=1}^{K} q_j(x) Q_j(D)$ is a self-adjoint differential operator in $[L_2(\mathbb{R}^n)]^m$, and M(x) is an $m \times m$ Hermitian matrix with

(1.2)
$$C|\xi|^2 \leq (M(x)\xi, \xi) \leq C^{-1}|\xi|^2, \qquad x, \xi \in \mathbb{R}^n$$

for some positive constant C.

In this paper we study the asymptotic behavior as $t \to \infty$ of the solution of the system (1.1) with initial value having finite energy. In doing so, we compare the system (1.1) with the unperturbed system

(1.3)
$$\frac{1}{i} \frac{\partial u}{\partial t} = P(D)u,$$

assuming that for some s>1 and C>0

(1.4)
$$|M(x) - I| + \sum_{j=1}^{K} |q_j(x)| \leq C(1 + |x|^2)^{-s/2}, \quad x \in \mathbb{R}^n$$

Here I is the unit matrix, and |A| denotes the norm of an $m \times m$ matrix $A: |A| = (\sum_{i,j=1}^{m} |A_{ij}|^2)^{1/2}$.

Let H_0 and H be Hilbert spaces with inner products

(1.5)
$$(f, g)_{H_0} = \int_{\mathbf{R}^n} f(x)\overline{g(x)}dx, \quad f, g \in [L_2(\mathbf{R}^n)]^m$$

and

(1.6)
$$(f, g)_{H} = \int_{\mathbb{R}^{n}} M(x)^{-1} f(x) \overline{g(x)} dx , \quad f, g \in [L_{2}(\mathbb{R}^{n})]^{m} ,$$