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\S 1. Introduction.

A large class of wave propagation phenomena of classical physics and
quantum mechanics are governed by “ symmetric systems “ of partial differ-
ential equations of the form

(1.1) $\frac{1}{i}\frac{\partial u}{\partial t}=M(x)(P(D)+\sum_{j=1}^{K}q_{j}(x)Q_{j}(D))u$ .

Here $x\in R^{n},$ $t\in R$, $D=-i\partial/\partial x$ , $u(x, t)$ is a $C^{m}$-valued function, $P(D)+$

$\sum_{j=1}^{K}q_{j}(x)Q_{j}(D)$ is a self-adjoint differential operator in $[L_{2}(R^{n})]^{m}$ , and $M(x)$

is an $m\times m$ Hermitian matrix with

(1.2) $C|\xi|^{2}\leqq(M(x)\xi, \xi)\leqq C^{-1}|\xi|^{2}$ , $x,$ $\xi\in R^{n}$

for some positive constant $C$ .
In this paper we study the asymptotic behavior as $ t\rightarrow\infty$ of the solution

of the system (1.1) with initial value having finite energy. In doing so, we
compare the system (1.1) with the unperturbed system

(1.3) $\frac{1}{i}\frac{\partial u}{\partial t}=P(D)u$ ,

assuming that for some $s>1$ and $C>0$

(1.4) $|M(x)-I|+\sum_{j=1}^{K}|q_{j}(x)|\leqq C(1+|x|^{2})^{-s/2}$ , $x\in R^{n}$

Here $I$ is the unit matrix, and $|A|$ denotes the norm of an $m\times m$ matrix
$A:|A|=(\Sigma_{i,j=1}^{m}|A_{ij}|^{2})^{1/2}$ .

Let $H_{0}$ and $H$ be Hilbert spaces with inner products

(1.5) $(f, g)_{H_{0}}=\int_{R}nf(x)\overline{g(x)}dx$ , $f,$ $g\in[L_{2}(R^{n})]^{m}$

and

(1.6) $(f, g)_{H}=\int_{R}nM(x)^{-1}f(x)\overline{g(x)}dx$ , $f,$ $g\in[L_{2}(R^{n})]^{m}$ ,


