Weil's representations of the symplectic groups over finite fields*)

By Hiroyuki YOSHIDA

(Received May 15, 1978)

Introduction.

Let F(q) be the finite field with q elements where q is odd. Suppose that there is given a $2n \times 2n$ symmetric matrix S whose entries are in F(q) such that det $S \neq 0$. Let $O_1(S)$ denote the special orthogonal group with respect to S and Sp(2m) denote the symplectic group of genus m. We consider $O_1(S)$ and Sp(2m) as connected semisimple algebraic groups defined over F(q) endowed with the Frobenius map F. Let $M_{2n,m}(F(q))$ be the set of all $2n \times m$ matrices with entries in F(q) and $S(M_{2n,m}(F(q)))$ be the space of all complex valued functions on $M_{2n,m}(F(q))$. Then we can construct, associated with S, so called Weil's representation $\pi_{S,m}$ of $Sp(2m)^F$ realized on $S(M_{2n,m}(F(q)))$. The representation $\pi_{S,m}$ can be decomposed naturally according to representations of $O_1(S)^F$. Thus we have a correspondence from the set of the equivalence classes of all representations of $O_1(S)^F$ to that of $Sp(2m)^F$. For a representation ρ of $O_1(S)^F$, let $\pi_{S,m}(\rho)$ denote the representation of $Sp(2m)^F$ which corresponds to ρ .

The purpose of this paper is to get some insight about the nature of this correspondence in the case m=n. A natural parametrization of most of the irreducible representations of $O_1(S)^F$ and $Sp(2n)^F$ is available from the work of Deligne-Lusztig [4]. In their paper, for an arbitrary connected reductive algebraic group G defined over F(q), a maximal F-stable torus T and a character θ of T^F , a virtual representation R_T^θ of G^F is constructed. Moreover it is shown that any irreducible representation of G^F occurs as a constituent of some R_T^θ and that $(-1)^{\sigma(G)-\sigma(T)}R_T^\theta$ is an irreducible representation if θ is in general position, where $\sigma(G)$ and $\sigma(T)$ denote the F(q)-rank of G and T respectively. Now let T be a maximal F-stable torus of $O_1(S)$. Then there exists a maximal F-stable torus T' of Sp(2n) such that T is isomorphic to T' over F(q) as algebraic tori. We fix the isomorphism between T^F and T^{F} , which is similar to that between T_0^F and T_1^F given in § 2. Let θ be a character of T^F which

^{*)} This work was partially supported by the Sakkokai Foundation.