On a conjecture of Nakai on Picard principle

By Michihiko Kawamura*)

(Received Nov. 30, 1977)

A nonnegative locally Hölder continuous function $P(z)$ on the punctured closed unit disk $0<|z| \leqq 1$ will be referred to as a density on $\Omega: 0<|z|<1$. We view Ω as interior of the bordered surface: $0<|z| \leqq 1$; so we consider the boundary $\partial \Omega$ to be the circle: $|z|=1$. The elliptic dimension of a density P on Ω at $z=0, \operatorname{dim} P$ in notation, is defined to be the dimension of the half module \mathscr{F}_{P} of nonnegative solutions of the equation $\Delta u=P u\left(\Delta=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}\right)$ on Ω with vanishing boundary values on $\partial \Omega:|z|=1$. After Bouligand we say that the Picard principle is valid for P at $z=0$ if $\operatorname{dim} P=1$. We are interested in determining those densities P on Ω for which the Picard principle is valid. We observe the following example of Nakai [26, 29]: Let $P_{\mu}(z)=|z|^{-\mu}$ and $P_{-\infty}(z)=0$. Then

$$
\operatorname{dim} P_{\mu}= \begin{cases}1 & (\mu \in[-\infty, 2]) \tag{1}\\ c & (\mu \in(2,+\infty))\end{cases}
$$

where c is the cardinal number of continuum. In this connection Nakai conjectured that the Picard principle is valid for general densities $P(z)$ on Ω with $P(z)=\mathcal{O}\left(|z|^{-2}\right)(z \rightarrow 0)$. The purpose of this paper is to prove this conjecture in the affirmative. Namely we shall prove the following

Main Theorem. The Picard principle is valid for any density $P(z)$ on Ω with $P(z)=\mathcal{O}\left(|z|^{-2}\right)(z \rightarrow 0)$.

The proof of this theorem will be given in Section 1. A formulation of the Harnack inequality by S. Itô [11] will play an essential role in our proof. The author is grateful to Professor Itô for his advice on this inequality. In Section 2 we will discuss the order of the generator $g(z)$ of \mathscr{I}_{P} as $z \rightarrow 0$ for $P(z)=\mathcal{O}\left(|z|^{-2}\right)(z \rightarrow 0)$. We will establish the following inequality :

$$
\begin{equation*}
C_{1} \log \frac{1}{|z|} \leqq g(z) \leqq C_{2}|z|^{-c} \tag{2}
\end{equation*}
$$

on Ω where C_{1} and C_{2} are positive constants and $c=\sup _{\Omega}|z| P(z)^{1 / 2}$. In the final Section 3 we will mention two generalizations of the main theorem. We will show that the condition $P(z) \leqq$ const. $|z|^{-2}$ on Ω in the main theorem can be relaxed to $P(z) \leqq$ const. $|z|^{-2}$ only on a sequence of disjoint concentric annuli A_{n}

[^0]
[^0]: *) The author is grateful to Professor Nakai for the valuable discussions with him.

