The orbits of affine symmetric spaces under the action of minimal parabolic subgroups

By Toshihiko MATSUKI

(Received Nov. 19, 1977)

Introduction

An affine symmetric space is a triple (G, H, σ) consisting of a connected Lie group G, a closed subgroup H of G and an involutive automorphism σ of G such that H lies between G_{σ} and the identity component of G_{σ} , where G_{σ} denotes the closed subgroup of G consisting of all the elements fixed by σ . Suppose that G is real semi-simple. We are interested in the double coset decomposition $H \setminus G/P$, where P is a minimal parabolic subgroup of G. These double cosets are considered as H-orbits on G/P or as P-orbits on $H \setminus G$.

If H is a maximal compact subgroup of G (when G is of finite center) and σ is the corresponding Cartan involution, this orbit structure is trivial in view of the Iwasawa decomposition $G = KA_{\mathfrak{p}}N^{+}$, where $P = MA_{\mathfrak{p}}N^{+}$ and H = K. If the affine symmetric space is $(G \times G, \Delta G, \sigma)$ where G is real semi-simple, ΔG denotes the diagonal of $G \times G$ and σ is the mapping $(x, y) \to (y, x)$, then the orbit structure can be easily reduced to the Bruhat decomposition $G = \bigcup_{w \in W} PwP$. In the case of (G_c, G, σ) , where G_c is a complex semi-simple Lie group, G is a real form of G_c and σ is the conjugation of G_c with respect to G, then the orbit structure is studied in Aomoto [1] and Wolf [8].

In this paper the orbit structure is determined for an arbitrary affine symmetric space such that G is real semi-simple.

Let (G, H, σ) be an affine symmetric space such that G is real semi-simple, and $(\mathfrak{g}, \mathfrak{h}, \sigma)$ the corresponding symmetric Lie algebra. Let θ be a Cartan involution commutative with σ (cf. Berger [2]), and $\mathfrak{g}=\mathfrak{t}+\mathfrak{p}$ the corresponding Cartan decomposition. Since the factor space G/P is identified with the set of all the minimal parabolic subalgebras of \mathfrak{g} , the following theorem and corollary which are the extension of [1] Theorem 3 and of [8] 2.6 Theorem give a complete characterization of H-orbits on G/P.

THEOREM 1. (i) Let \mathfrak{P} be a minimal parabolic subalgebra of \mathfrak{g} . Then there exists a σ -stable maximal abelian subspace $\mathfrak{a}_{\mathfrak{p}}$ of \mathfrak{p} and a positive system Σ^+ of the root system Σ of the pair $(\mathfrak{g}, \mathfrak{a}_{\mathfrak{p}})$ such that \mathfrak{P} is H_0 -conjugate to $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \Sigma^+)$ (where H_0 is the identity component of H, $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \Sigma^+)=\mathfrak{m}+\mathfrak{a}_{\mathfrak{p}}+\mathfrak{n}^+$, $\mathfrak{m}=\mathfrak{f}_{\mathfrak{l}}(\mathfrak{a}_{\mathfrak{p}})$, $\mathfrak{n}^+=\sum_{\alpha\in\Sigma^+}\mathfrak{g}_{\alpha}$, and