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Introduction

An affine symmetric space is a triple $(G, H, \sigma)$ consisting of a connected
Lie group $G$ , a closed subgroup $H$ of $G$ and an involutive automorphism $\sigma$ of $G$

such that $H$ lies between $G_{\sigma}$ and the identity component of $G_{\sigma}$ , where $G_{\sigma}$

denotes the closed subgroup of $G$ consisting of all the elements fixed by $\sigma$ .
Suppose that $G$ is real semi-simple. We are interested in the double coset de-
composition $H\backslash G/P$, where $P$ is a minimal parabolic subgroup of $G$ . These
double cosets are considered as H-orbits on $G/P$ or as P-orbits on $H\backslash G$ .

If $H$ is a maximal compact subgroup of $G$ (when $G$ is of finite center) and
$\sigma$ is the corresponding Cartan involution, this orbit structure is trivial in view
of the Iwasawa decomposition $G=KA_{\mathfrak{p}}N^{+}$ , where $P=MA_{\mathfrak{p}}N^{+}$ and $H=K$. If the
affine symmetric space is $(G\times G, \Delta G, \sigma)$ where $G$ is real semi-simple, $\Delta G$ denotes
the diagonal of $G\times G$ and $\sigma$ is the mapping $(x, y)\rightarrow(y, x)$ , then the orbit
structure can be easily reduced to the Bruhat decomposition $G=\bigcup_{w\in W}PwP$ . In the

case of $(G_{c}, G, \sigma)$ , where $G_{c}$ is a complex semi-simple Lie group, $G$ is a real
form of $G_{c}$ and $\sigma$ is the conjugation of $G_{c}$ with respect to $G$ , then the orbit
structure is studied in Aomoto [1] and Wolf [8].

In this paper the orbit structure is determined for an arbitrary affine sym-
metric space such that $G$ is real semi-simple.

Let $(G, H, \sigma)$ be an affine symmetric space such that $G$ is real semi-simple,
and $(\mathfrak{g}, \mathfrak{h}, \sigma)$ the corresponding symmetric Lie algebra. Let $\theta$ be a Cartan in-
volution commutative with $\sigma$ (cf. Berger [2]), and $\mathfrak{g}=f+\mathfrak{p}$ the corresponding
Cartan decomposition. Since the factor space $G/P$ is identified with the set of
all the minimal parabolic subalgebras of $\mathfrak{g}$ , the following theorem and corollary
which are the extension of [1] Theorem 3 and of [8] 2. 6 Theorem give a
complete characterization of H-orbits on $G/P$ .

THEOREM 1. (i) Let $\mathfrak{P}$ be a minimal parabolic subalgebra of $\mathfrak{g}$ . Then there
exists a $\sigma$ -stable maximal abelian subspace $\mathfrak{a}_{\mathfrak{p}}$ of $\mathfrak{p}$ and a positive system $\Sigma^{+}$ of the
root system $\Sigma$ of the pair $(\mathfrak{g}, \mathfrak{a}_{\mathfrak{p}})$ such that $\mathfrak{P}$ is $H_{0}$-conjugate to $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \Sigma^{+})$ (where

$H_{0}$ is the identity component of $H,$ $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \sum^{+})=\mathfrak{m}+\mathfrak{a}_{\mathfrak{p}}+\mathfrak{n}^{+},$ $\mathfrak{m}=\mathfrak{z}_{c}(\mathfrak{a}_{\mathfrak{p}}),$

$\mathfrak{n}^{+}=\sum_{\alpha\in\Sigma^{+}}\mathfrak{g}_{a}$
, and


