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\S 1. Introduction.

Let $M$ be an n-dimensional compact connected manifold. For every Rieman-
nian metric $g$ on $M,$ $1et-\Delta_{g}$ be the Laplace-Beltrami operator acting on smooth
functions on $M$. Let $\lambda_{1}(g)$ be the least positive eigenvalue of $\Delta_{g}$ . M. Berger
([1] p. 138) posed the problem: Does there exist a positive constant $k(M)$ such
that

$\lambda_{1}(g)$ vol $(M, g)^{2/n}\leqq k(M)$ ,

for every Riemannian metric $g$ on $M$ ? J. Hersch [5] showed that if $M$ is dif-
feomorphic with the 2-dimensional sphere $S^{2}$ , then for every Riemannian metric
$g$ on $M$,

$\lambda_{1}(g)$ area $(S^{2}, g)\leqq 8\pi$ .
The equality holds if and only if $(S^{2}, g)$ is the canonical sphere.

In the present paper, let $M$ be a compact connected. Lie group. Let us consider
the problem: Does there exist a positive constant $k(M)$ such that

$\lambda_{1}(g)$ vol $(M, g)^{2/n}\leqq k(M)$

for every left invariant Riemannian metric $g$ on $Mi$ For this problem we claim
(cf. theorem 4) the following: The only compact Lie group $M$ which has a positive
answer for this problem is $a$ toru $sT^{n}$ , that is, if the compact connected Lie
group $M$ has a non-trivial commutator subgroup, then there exists a family of
left invariant Riemannian metrics $g(t)(0<t<\infty)$ on $M$ such that $\lim_{t\rightarrow\infty}$ . $\lambda_{1}(g(t))=\infty$ ,

$\lim_{t\rightarrow 0}$ . $\lambda_{1}(g(t))=0$ and vol $(M, g(t))$ is constant in $t$ . In particular, since $SU(2)$ (resp.

$SO(3))$ is diffeomorphic with $S^{3}$ (resp. $P^{3}(R)$), the above shows that M. Berger’s
conjecture is negative for $S^{3}$ and $P^{3}(R)$ . It is known (cf. [1]) that, for a torus
$T^{n}$ , there exists a positive constant $k(T^{n})$ such that $\lambda_{1}(g)$ vol $(T^{n}, g)^{n/2}\leqq k(T^{n}\rangle$

for every left invariant Riemannian metric $g$ on $T^{n}$ .
In \S 2, we shall express the Laplace-Beltrami operator on a connected Lie

group in term of the left invariant vector fields. In \S 3, we shall give an estima-


