On the least positive eigenvalue of the Laplacian for compact group manifolds

By Hajime URAKAWA

(Received Feb. 27, 1978) (Revised June 30, 1978)

§1. Introduction.

Let M be an *n*-dimensional compact connected manifold. For every Riemannian metric g on M, let $-\Delta_g$ be the Laplace-Beltrami operator acting on smooth functions on M. Let $\lambda_1(g)$ be the least positive eigenvalue of Δ_g . M. Berger ([1] p. 138) posed the problem : Does there exist a positive constant k(M) such that

$$\lambda_1(g) \operatorname{vol}(M, g)^{2/n} \leq k(M)$$
,

for every Riemannian metric g on M? J. Hersch [5] showed that if M is diffeomorphic with the 2-dimensional sphere S^2 , then for every Riemannian metric g on M,

 $\lambda_1(g) \operatorname{area}(S^2, g) \leq 8\pi$.

The equality holds if and only if (S^2, g) is the canonical sphere.

In the present paper, let M be a compact connected. Lie group. Let us consider the problem : Does there exist a positive constant k(M) such that

$$\lambda_1(g) \operatorname{vol}(M, g)^{2/n} \leq k(M)$$

for every left invariant Riemannian metric g on M? For this problem we claim (cf. theorem 4) the following: The only compact Lie group M which has a positive answer for this problem is a torus T^n , that is, if the compact connected Lie group M has a non-trivial commutator subgroup, then there exists a family of left invariant Riemannian metrics $g(t)(0 < t < \infty)$ on M such that $\lim_{t\to\infty} \lambda_1(g(t)) = \infty$, $\lim_{t\to 0} \lambda_1(g(t)) = 0$ and vol (M, g(t)) is constant in t. In particular, since SU(2) (resp. SO(3)) is diffeomorphic with S^3 (resp. $P^3(\mathbf{R})$), the above shows that M. Berger's conjecture is negative for S^3 and $P^3(\mathbf{R})$. It is known (cf. [1]) that, for a torus T^n , there exists a positive constant $k(T^n)$ such that $\lambda_1(g) \operatorname{vol}(T^n, g)^{n/2} \leq k(T^n)$ for every left invariant Riemannian metric g on T^n .

In § 2, we shall express the Laplace-Beltrami operator on a connected Lie group in term of the left invariant vector fields. In § 3, we shall give an estima-