Generalized Hasse-Witt invariants and unramified Galois extensions of an algebraic function field

By Hidenori Katsurada

(Received June 5, 1977)
(Revised April 10, 1978)

Introduction.

In this paper, we give a certain generalization of the Hasse-Witt theory (cf. [4]).

Let K be an algebraic function field with an algebraically closed constant field k of characteristic $p>0$, and g be its genus. Let M be the maximum unramified Galois extension of K. Let Δ_{g} be the group generated by $2 g$ elements $u_{i}, v_{i}(i=1, \cdots, g)$ with the following fundamental relation:

$$
\left(u_{1} v_{1} u_{1}^{-1} v_{1}^{-1}\right) \cdots\left(u_{g} v_{g} u_{g}^{-1} v_{g}^{-1}\right)=1 .
$$

Let \bar{J}_{g} be the completion of Δ_{g} with respect to subgroups of finite index. Then, it is well known that there is a surjective homomorphism of \bar{J}_{g} onto $\operatorname{Gal}(M / K)$, and that its kernel is contained in the intersection of kernels of continuous homomorphism from \bar{J}_{g} to finite groups with order prime to p. (cf. [3]).

It is obvious that the structure of $\operatorname{Gal}(M / K)$ (as an abstract group) depends on g and p. We note that for any finite group G with order prime to p, the number of unramified Galois extensions of K whose Galois group is isomorphic to G is determined by g. Moreover, it is well-known that the structure of the Galois group of the maximal unramified abelian extension of K is determined by g, p, and the invariant γ_{K} that was introduced by HasseWitt (cf. [4]). Hence if $g=1, \operatorname{Gal}(M / K)$ is determined by g, p, and γ_{K}. But if $g \geqq 2$, the structure of $\operatorname{Gal}(M / K)$ is not determined only by g, p and γ_{K}.

In $\S 1$, we define an unramified $D_{n p m}$-extension of K as an unramified Galois extension of K whose Galois group is isomorphic to

$$
\begin{aligned}
D_{n p m}=\langle\sigma, \tau| \sigma^{p^{m}}= & \tau^{n}=1, \tau \sigma \tau^{-1}=\sigma^{i}, \text { where } i \text { is a primitive } n \text {-th } \\
& \text { root of unity in } \left.\left(\boldsymbol{Z} / p^{m} \boldsymbol{Z}\right)^{\times}\right\rangle .
\end{aligned}
$$

