Markov partitions of hyperbolic sets

By Masahiro KURATA

(Received Feb. 22, 1977) (Revised March 17, 1978)

§1. Introduction and preliminaries.

In this paper we prove that pseudo-orbits near a hyperbolic set are shadowed, and for a hyperbolic set there is its arbitrarily slight extension which has Markov partitions.

Bowen proved similar results for a basic set of an Axiom A diffeomorphism ([1], [3]).

Suppose $f: M \to M$ is a diffeomorphism of a Riemannian manifold M with \subseteq some Riemannian metric $\|\cdot\|$. A compact *f*-invariant set $\Lambda \subseteq M$ is said to be hyperbolic if T_AM (the tangent bundle of M over Λ) splits into a Whitney sum \subseteq of Tf-invariant subbundles

$$T_A M = E^s \oplus E^u$$
,

and if there are c>0 and $0<\lambda<1$ such that

$$\|Tf^{n}v\| \leq c\lambda^{n} \|v\| \quad \text{if} \quad v \in E^{s}$$
$$\|Tf^{-n}v\| \leq c\lambda^{n} \|v\| \quad \text{if} \quad v \in E^{u}$$

for n > 0.

The following was proved in [7].

THEOREM 0. Suppose Λ is a hyperbolic set for a diffeomorphism $f: M \to M$, and U is a neighbourhood of Λ . Then there is a hyperbolic set Λ' with $\Lambda \subset \Lambda' \subset U$ which is a quotient of a subshift of finite type. More precisely there are a subshift of finite type Σ on symbols $\mathcal{B}=\{B_1, \dots, B_N\}$ determined by an $N \times N$ 0-1 matrix $T=(t_{ij})$, and a map $\pi: \Sigma \to \Lambda'$ satisfying the followings.

- (1) $\pi(\Sigma)=\Lambda'$ and $f\pi=\pi\sigma$, where σ is the shift transformation.
- (2) B_i is a topologically embedded m-disk in M for $i=1, \dots, N$.
- (3) The map π is given by

$$\pi((a_i)_{i\in \mathbf{Z}}) = \bigcap_{i\in \mathbf{Z}} f^{-i}(a_i) \quad for \quad (a_i)_{i\in \mathbf{Z}} \in \Sigma.$$

Here Z denotes the integers.