On a duality for C^* -crossed products by a locally compact group

By Shō IMAI and Hiroshi TAKAI

(Received March 12, 1977)

Abstract.

Let $(\mathfrak{A}, G, \alpha)$ be a C^* -dynamical system, and $C^*_r(\mathfrak{A}; \alpha)$ the reduced C^* crossed product of \mathfrak{A} by α . We construct a "dual" C^* -crossed product $C^*_a(C^*_r(\mathfrak{A}; \alpha); \beta)$ of $C^*_r(\mathfrak{A}; \alpha)$ by an isomorphism β from $C^*_r(\mathfrak{A}; \alpha)$ into the full operator algebra $\mathcal{L}(\mathfrak{R})$ on a Hilbert space \mathfrak{R} . Then, it is isomorphic to the C^* -tensor product $\mathfrak{A} \otimes_* \mathcal{C}(L^2(G))$ of \mathfrak{A} and the C^* -algebra $\mathcal{C}(L^2(G))$ of all compact operators on $L^2(G)$.

In the abelian case, there exists a continuous action $\hat{\alpha}$ of the dual group \hat{G} of G on the C*-crossed product $C^*(\mathfrak{A}; \alpha)$ of \mathfrak{A} by α such that the C*-crossed $C^*(C^*(\mathfrak{A}; \alpha); \hat{\alpha})$ of $C^*(\mathfrak{A}; \alpha)$ by $\hat{\alpha}$ is isomorphic to $C^*_d(C^*_r(\mathfrak{A}; \alpha); \beta)$.

§1. Introduction.

In [4], the second author showed a C^* -algebra version of Takesaki's duality theorem for crossed products of von Neumann algebras. In other words, given a C^* -dynamical system $(\mathfrak{A}, G, \alpha)$ based on a locally compact abelian group G, there exists a continuous action $\hat{\alpha}$ of the dual group \hat{G} of G on the C^* -crossed product $C^*(\mathfrak{A}, \alpha)$ of \mathfrak{A} by α such that the C^* -dynamical system $(C^*(C^*(\mathfrak{A}; \alpha); \alpha), G, \hat{\alpha})$ is equivalent to the C^* -dynamical system $(\mathfrak{A} \otimes_* \mathcal{C}(L^2(G)), G, \alpha \otimes \operatorname{Ad}(\lambda))$, where $\mathcal{C}(L^2(G))$ is the C^* -algebra of all compact operators on $L^2(G)$, and λ is the regular representation of G on $L^2(G)$.

Recently, Y. Nakagami [3] generalized Takesaki's duality theorem based on abelian groups to non-abelian groups using the method on Hopf-von Neumann algebras. (Also see [2].)

In this paper, we study a non-abelian duality for C^* -crossed products referring to Nakagami's construction in von Neumann algebras. Actually, we obtain that for a C^* -dynamical system $(\mathfrak{A}, G, \alpha)$, there exists an isomorphism β of the reduced C^* -crossed product $C^*_r(\mathfrak{A}; \alpha)$ of \mathfrak{A} by α into the full operator algebra $\mathfrak{L}(L^2(G \times G; \mathfrak{H}))$ on the Hilbert space $L^2(G \times G; \mathfrak{H})$ such that the "dual" C^* -crossed product $C^*_d(C^*_r(\mathfrak{A}; \alpha); \beta)$ is isomorphic to the tensor product $\mathfrak{A} \otimes_* \mathcal{C}(L^2(G))$.