On the automorphism of C^2 with invariant axes

By Hironori SHIGA

(Received June 21, 1976) (Revised Aug. 20, 1976)

0. Statement of results.

In this paper we study the biholomorphic automorphism of C^2 which leaves two coordinate axes invariant. E. Peschl investigated the automorphism of this type in [1]. We say such an automorphism is of axial type. If F=(f(x,y), g(x,y)) is an automorphism of axial type, then F takes the form;

$$F: \left\{ \begin{array}{l} f = xe^{\phi(x,y)} \\ g = ye^{\phi(x,y)}, \end{array} \right.$$

where ϕ and ψ are holomorphic functions. We say that a function f(x, y) is a component of an automorphism (of axial type) if there is a function g(x, y) such that

$$T: \left\{ \begin{array}{l} x' = f(x, y) \\ y' = g(x, y) \end{array} \right.$$

is an automorphism (of axial type).

Our results are as follows.

THEOREM. (1) Let $\phi(x, y)$ be a polynomial and set $f(x, y) = xe^{\phi(x, y)}$. Then f(x, y) is a component of an automorphism of axial type if and only if $\phi(x, y)$ takes the form $A(x^m y^{n+1})$, where m and n are non-negative integers and A is a polynomial of one variable.

(2) The transformation

$$T: \left\{ \begin{array}{l} x' = xe^{A(x^m y^{n+1})} \\ y' = g(x, y) \end{array} \right.$$

is an automorphism of axial type if and only if g takes the form

$$y \cdot \exp\left[-\frac{m}{n+1}A(x^my^{n+1})+H(x')\right]$$
,

where H is a holomorphic function of one variable.