On the automorphism of C^{2} with invariant axes

By Hironori SHIGA

(Received June 21, 1976)
(Revised Aug. 20, 1976)

0. Statement of results.

In this paper we study the biholomorphic automorphism of \boldsymbol{C}^{2} which leaves two coordinate axes invariant. E. Peschl investigated the automorphism of this type in [1]. We say such an automorphism is of axial type. If $F=(f(x, y)$, $g(x, y)$) is an automorphism of axial type, then F takes the form;

$$
F:\left\{\begin{array}{l}
f=x e^{\phi(x, y)} \\
g=y e^{\psi(x, y)}
\end{array}\right.
$$

where ϕ and ψ are holomorphic functions. We say that a function $f(x, y)$ is a component of an automorphism (of axial type) if there is a function $g(x, y)$ such that

$$
T:\left\{\begin{array}{l}
x^{\prime}=f(x, y) \\
y^{\prime}=g(x, y)
\end{array}\right.
$$

is an automorphism (of axial type).
Our results are as follows.
Theorem. (1) Let $\phi(x, y)$ be a polynomial and set $f(x, y)=x e^{\phi(x, y)}$. Then $f(x, y)$ is a component of an automorphism of axial type if and only if $\phi(x, y)$ takes the form $A\left(x^{m} y^{n+1}\right)$, where m and n are non-negative integers and A is a polynomial of one variable.
(2) The transformation

$$
T:\left\{\begin{array}{l}
x^{\prime}=x e^{A\left(x x_{y} n+1\right)} \\
y^{\prime}=g(x, y)
\end{array}\right.
$$

is an automorphism of axial type if and only if g takes the form

$$
y \cdot \exp \left[-\frac{m}{n+1} A\left(x^{m} y^{n+1}\right)+H\left(x^{\prime}\right)\right]
$$

where H is a holomorphic function of one variable.

