On finite multiplicative subgroups of simple algebras of degree 2

By Michitaka Hikari

(Received Dec. 6, 1976)

Amitsur ([1]) determined all finite multiplicative subgroups of division algebras. We try to determine, more generally, all finite multiplicative subgroups of simple algebras of fixed degree. In [5] we characterized p-groups contained in the full matrix algebras $M_{n}(\Delta)$ of fixed degree n, where Δ is a division algebra of characteristic 0 . In this paper we will study multiplicative subgroups of $M_{2}(\Delta)$.

In $\S 2$ we will determine all finite nilpotent subgroups of $M_{2}(\Delta)$, and in $\S 3$ all finite subgroups of $M_{2}(\Delta)$ with abelian Sylow 2-groups. Finally, in §4, we will give some additional remarks.

§ 1. Preliminaries.

All division algebras considered in this paper are of characteristic 0 . As usual $\boldsymbol{Q}, \boldsymbol{R}, \boldsymbol{C}$ and \boldsymbol{H} denote respectively the rational number field, the real number field, the complex number field, and the quaternion algebra over \boldsymbol{R}.

Let Δ be a division algebra. We denote by $M_{n}(\Delta)$ the full matrix algebra of degree n over Δ. By a subgroup of $M_{n}(\Delta)$ we mean a finite multiplicative subgroup of $M_{n}(\Delta)$. Further let K be a field contained in the center of Δ and let G be a subgroup of $M_{n}(\boldsymbol{\Delta})$. We define $V_{K}(G)=\left\{\Sigma \alpha_{i} g_{i} \mid \alpha_{i} \in K, g_{i} \in G\right\}$. Then $V_{K}(G)$ is a K-subalgebra of $M_{n}(\Delta)$ and there is a natural epimorphism $K G \rightarrow V_{K}(G)$. Hence $V_{K}(G)$ is a semi-simple K-subalgebra of $M_{n}(\Delta)$.

Let m, r be relatively prime integers, and put $s=(r-1, m), t=m / s ; n=$ the minimal positive integer satisfying $r^{n} \equiv 1 \bmod m$. Denote by $G_{m, r}$ the group generated by two elements a, b with the relations; $a^{m}=1, b^{n}=a^{t}$ and $b a b^{-1}=a^{r}$. Let ζ_{m} be a fixed primitive m-th root of unity and let $\sigma=\sigma_{r}$ be the automorphism of $\boldsymbol{Q}\left(\zeta_{m}\right)$ determined by the mapping $\zeta_{m} \rightarrow \zeta_{m}{ }^{r}$. Let $\left\{\alpha_{\sigma i, \sigma j}\right\}$ be the factor set of $\langle\sigma\rangle$ in $\boldsymbol{Q}\left(\zeta_{m}\right)$ defined by

$$
\alpha_{\sigma i, \sigma j}= \begin{cases}1 & \text { when } \quad i+j<n \\ \zeta_{s}=\zeta_{m}^{t} & \text { when } \quad i+j \geqq n,\end{cases}
$$

and denote by $\Lambda_{m, r}$ the crossed product of $\boldsymbol{Q}\left(\zeta_{m}\right)$ and $\langle\sigma\rangle$ by $\left\{\alpha_{\sigma i, \sigma j}\right\}$.

