J. Math. Soc. Japan Vol. 28, No. 4, 1976

On finite multiplicative subgroups of simple algebras of degree 2

By Michitaka HIKARI

(Received Dec. 6, 1976)

Amitsur ([1]) determined all finite multiplicative subgroups of division algebras. We try to determine, more generally, all finite multiplicative subgroups of simple algebras of fixed degree. In [5] we characterized *p*-groups contained in the full matrix algebras $M_n(\varDelta)$ of fixed degree *n*, where \varDelta is a division algebra of characteristic 0. In this paper we will study multiplicative subgroups of $M_2(\varDelta)$.

In §2 we will determine all finite nilpotent subgroups of $M_2(\varDelta)$, and in §3 all finite subgroups of $M_2(\varDelta)$ with abelian Sylow 2-groups. Finally, in §4, we will give some additional remarks.

§1. Preliminaries.

All division algebras considered in this paper are of characteristic 0. As usual Q, R, C and H denote respectively the rational number field, the real number field, the complex number field, and the quaternion algebra over R.

Let Δ be a division algebra. We denote by $M_n(\Delta)$ the full matrix algebra of degree *n* over Δ . By a subgroup of $M_n(\Delta)$ we mean a finite multiplicative subgroup of $M_n(\Delta)$. Further let *K* be a field contained in the center of Δ and let *G* be a subgroup of $M_n(\Delta)$. We define $V_K(G) = \{\sum \alpha_i g_i \mid \alpha_i \in K, g_i \in G\}$. Then $V_K(G)$ is a *K*-subalgebra of $M_n(\Delta)$ and there is a natural epimorphism $KG \rightarrow V_K(G)$. Hence $V_K(G)$ is a semi-simple *K*-subalgebra of $M_n(\Delta)$.

Let *m*, *r* be relatively prime integers, and put s=(r-1, m), t=m/s; n=the minimal positive integer satisfying $r^n \equiv 1 \mod m$. Denote by $G_{m,r}$ the group generated by two elements *a*, *b* with the relations; $a^m=1$, $b^n=a^t$ and $bab^{-1}=a^r$. Let ζ_m be a fixed primitive *m*-th root of unity and let $\sigma=\sigma_r$ be the automorphism of $Q(\zeta_m)$ determined by the mapping $\zeta_m \to \zeta_m^r$. Let $\{\alpha_{\sigma i,\sigma j}\}$ be the factor set of $\langle \sigma \rangle$ in $Q(\zeta_m)$ defined by

$$\alpha_{\sigma^i,\sigma^j} = \begin{cases} 1 & \text{when } i+j < n \\ \zeta_s = \zeta_m^t & \text{when } i+j \ge n , \end{cases}$$

and denote by $\Lambda_{m,r}$ the crossed product of $Q(\zeta_m)$ and $\langle \sigma \rangle$ by $\{\alpha_{\sigma^i,\sigma^j}\}$.