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\S 1. Introduction.

The purpose of the present paper is to characterize the images of some
function spaces on the motion groups by the Fourier transform.

Let $K$ be a connected compact Lie group acting on a finite dimensional
real vector space $V$ as a linear group. Let $G$ be the semidirect product of
$V$ and $K,$ $i$ . $e$ . $G$ is the group comprised of all pairs $(x, k)(x\in V, k\in K)$ with
the direct product topology, multiplication being given by $(x_{1}, k_{1})(x_{2}, k_{2})=$

$(x_{1}+k_{1}x_{2}, k_{1}k_{2})$ . $G$ is called the motion group.
Let $\hat{V}$ be the dual space of $V$ . For any $\xi\in\hat{V}$ we denote by $U^{\xi}$ the induced

representation of $G$ by the unitary representation $x->e^{i<\xi,x>},$ $(i=\sqrt{-1})$ of the
normal abelian subgroup V. $U^{\xi}$ is not irreducible. Any irreducible unitary
representation of $G$ is, however, contained in $U^{\xi}$ for some $\xi\in\hat{V}$ as an irre-
ducible component. Let $E$ be a function space on $G$ . We define the Fourier

transform $T_{f}$ of $f\in E$ by $T_{f}(\xi)=\int_{G}f(g)U_{g}^{\xi}dg$. If $f$ is integrable, this transform

has meaning and $T_{f}$ is a bounded operator valued function on V.
The Plancherel formula for $G$ ( $L_{2}$-theory) was given by A. Kleppner and

R. Lipsman ([1], Theorem 4.4). Let $C_{c}^{\infty}(G)$ be the space of all infinitely dif-
ferentiable functions with compact support on $G$ . Let $S(G)$ be the space of
all infinitely differentiable and rapidly decreasing functions on $G$ . In this
paper we consider these two cases $E=C_{c}^{\infty}(G)$ (the Paley-Wiener theorem) and
$E=S(G)$ . Then $T_{f}(\xi)$ is an integral operator on $L_{2}(K)$ for any $f\in E$ and $\xi\in\hat{V}$

and its kernel function is given by $\kappa_{f}(\xi;k_{1}, k_{2})=\int_{V}f(k_{1}x, k_{1}k_{2}^{-1})e^{i<\xi,x>}dx,$ $(k_{1}, k_{2}\in K)$ .
When $K$ is the identity group, $\kappa_{f}$ is the ordinary Fourier transform on Eucli-
dean space $V$. We call $\kappa_{f}$ the scalar Fourier transform of $f$. Let $\tilde{E}$ and $\hat{E}$

be the images of $E$ by the scalar Fourier transform and Fourier transform,
respectively. The characterization of $\tilde{E}$ can be accomplished by the ordinary
arguments of the classical Fourier analysis. To study the mapping $\kappa_{f}-T_{f}$

from $\tilde{E}$ to $\hat{E}$ we use an auxiliary theorem which can be proved using the
representation theory of compact groups.

We can assume that there exists a $K$-invariant inner product on $V$. There-


