Fourier transforms on the motion groups

By Keisaku KUMAHARA

(Received May 25, 1974)

§1. Introduction.

The purpose of the present paper is to characterize the images of some function spaces on the motion groups by the Fourier transform.

Let K be a connected compact Lie group acting on a finite dimensional real vector space V as a linear group. Let G be the semidirect product of V and K, i.e. G is the group comprised of all pairs (x, k) $(x \in V, k \in K)$ with the direct product topology, multiplication being given by $(x_1, k_1)(x_2, k_2) =$ $(x_1+k_1x_2, k_1k_2)$. G is called the motion group.

Let \hat{V} be the dual space of V. For any $\xi \in \hat{V}$ we denote by U^{ξ} the induced representation of G by the unitary representation $x \mapsto e^{i \langle \xi, x \rangle}$, $(i = \sqrt{-1})$ of the normal abelian subgroup V. U^{ξ} is not irreducible. Any irreducible unitary representation of G is, however, contained in U^{ξ} for some $\xi \in \hat{V}$ as an irreducible component. Let E be a function space on G. We define the Fourier transform T_f of $f \in E$ by $T_f(\xi) = \int_G f(g) U_g^{\xi} dg$. If f is integrable, this transform has meaning and T_f is a bounded operator valued function on \hat{V} .

The Plancherel formula for $G(L_2$ -theory) was given by A. Kleppner and R. Lipsman ([1], Theorem 4.4). Let $C_c^{\infty}(G)$ be the space of all infinitely differentiable functions with compact support on G. Let $\mathcal{S}(G)$ be the space of all infinitely differentiable and rapidly decreasing functions on G. In this paper we consider these two cases $E = C_c^{\infty}(G)$ (the Paley-Wiener theorem) and $E = \mathcal{S}(G)$. Then $T_f(\xi)$ is an integral operator on $L_2(K)$ for any $f \in E$ and $\xi \in \hat{V}$ and its kernel function is given by $\kappa_f(\xi; k_1, k_2) = \int_{\mathcal{F}} f(k_1 x, k_1 k_2^{-1}) e^{i\langle\xi, x\rangle} dx, (k_1, k_2 \in K)$. When K is the identity group, κ_f is the ordinary Fourier transform on Euclidean space V. We call κ_f the scalar Fourier transform of f. Let \tilde{E} and \hat{E} be the images of E by the scalar Fourier transform and Fourier transform, respectively. The characterization of \tilde{E} can be accomplished by the ordinary arguments of the classical Fourier analysis. To study the mapping $\kappa_f \mapsto T_f$ from \tilde{E} to \hat{E} we use an auxiliary theorem which can be proved using the representation theory of compact groups.

We can assume that there exists a K-invariant inner product on V. There-