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\S 1. Introduction.

Let (X, $\mathcal{M},$ $m$ ) be a $\sigma- finite$ measure space and $L_{p}(X)=L_{p}(X, \mathcal{M}, m),$ $1\leqq P$

$\leqq\infty$ , the usual (complex) Banach spaces. Let $T$ be a bounded linear operator
on $L_{1}(X)$ and $\tau$ its linear modulus [2]. In [9] (see also Akcoglu and Sucheston
[1]) the author proved that if the adjoint of $\tau$ has a strictly positive sub-
invariant function in $L_{\infty}(X)$ then the following two conditions are quivalent:

(i) $T^{n}$ converges weakly; (ii) $\frac{1}{n}\sum_{i=1}^{n}T^{k_{i}}$ converges strongly for any strictly

increasing sequence $k_{1},$ $k_{2},$ $\cdots$ of nonnegative integers. In the present paper
we shall prove that if $T$ is positive and satisfies $Tf=f$ whenever $0\leqq f\in L_{1}(X)$

and $Tf\geqq f$, then the equivalence of (i) and (ii) still holds. Applying this result,

we obtain that if, in addition, $\sup_{n}\Vert T^{n}\Vert_{1}<\infty$ and if $T^{n}f$ converges weakly for

any $f\in L_{1}(X)$ with $\int fdm=0$ , then $\frac{1}{n}\sum_{i=1}^{n}T^{k_{i}}f$ converges strongly for any $ f\in$

$L_{1}(X)$ with $\int fdm=0$ and for any strictly increasing sequence $k_{1},$ $k_{2},$ $\cdots$ of

nonnegative integers.

\S 2. Mean ergodic theorems.

In this section we shall assume that $T$ is a Positive linear operator on
$L_{1}(X)$ . $\tau*$ denotes the adjoint of $T$. Thus $\tau*$ acts on $L_{\infty}(X)$ , and $\int(Tf)udm$

$=\int f(T^{*}u)dm$ for all $f\in L_{1}(X)$ and all $u\in L_{\infty}(X)$ . If $A\in \mathcal{M}$ then $1_{A}$ is the

indicator function of $A$ and $L_{p}(A)$ denotes the Banach space of all $L_{p}(X)-$

functions that vanish $a$ . $e$ . on $X-A$ . A set $A\in \mathcal{M}$ is called closed under $T$ if
$f\in L_{1}(A)$ implies $Tf\in L_{1}(A)$ .

The following proposition is stated with more generality than what is
needed for applications in this paper. In particular, it extends a result of Lin
[7, Theorem 1.1] (see also Krengel and Sucheston [5] and Lin [6]).


