On mean ergodic theorems for positive operators in Lebesgue space

By Ryotaro SATO

(Received March 5, 1973) (Revised Oct. 22, 1974)

§1. Introduction.

Let (X, \mathcal{M}, m) be a σ -finite measure space and $L_p(X) = L_p(X, \mathcal{M}, m)$, $1 \leq p \leq \infty$, the usual (complex) Banach spaces. Let T be a bounded linear operator on $L_1(X)$ and τ its linear modulus [2]. In [9] (see also Akcoglu and Sucheston [1]) the author proved that if the adjoint of τ has a strictly positive subinvariant function in $L_{\infty}(X)$ then the following two conditions are quivalent: (i) T^n converges weakly; (ii) $\frac{1}{n} \sum_{i=1}^n T^{k_i}$ converges strongly for any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers. In the present paper we shall prove that if T is positive and satisfies Tf = f whenever $0 \leq f \in L_1(X)$ and $Tf \geq f$, then the equivalence of (i) and (ii) still holds. Applying this result, we obtain that if, in addition, $\sup_n ||T^n||_1 < \infty$ and if $T^n f$ converges weakly for any $f \in L_1(X)$ with $\int f dm = 0$, then $\frac{1}{n} \sum_{i=1}^n T^{k_i} f$ converges strongly for any $f \in L_1(X)$ with $\int f dm = 0$ and for any strictly increasing sequence k_1, k_2, \cdots of nonnegative integers.

§2. Mean ergodic theorems.

In this section we shall assume that T is a *positive* linear operator on $L_1(X)$. T^* denotes the adjoint of T. Thus T^* acts on $L_{\infty}(X)$, and $\int (Tf)u \, dm = \int f(T^*u) \, dm$ for all $f \in L_1(X)$ and all $u \in L_{\infty}(X)$. If $A \in \mathcal{M}$ then 1_A is the indicator function of A and $L_p(A)$ denotes the Banach space of all $L_p(X)$ -functions that vanish a.e. on X-A. A set $A \in \mathcal{M}$ is called *closed* under T if $f \in L_1(A)$ implies $Tf \in L_1(A)$.

The following proposition is stated with more generality than what is needed for applications in this paper. In particular, it extends a result of Lin [7, Theorem 1.1] (see also Krengel and Sucheston [5] and Lin [6]).