On mean ergodic theorems for positive operators in Lebesgue space

By Ryotaro Sato

(Received March 5, 1973)

(Revised Oct. 22, 1974)

§ 1. Introduction.

Let (X, \mathscr{M}, m) be a σ-finite measure space and $L_{p}(X)=L_{p}(X, \mathscr{M}, m), 1 \leqq p$ $\leqq \infty$, the usual (complex) Banach spaces. Let T be a bounded linear operator on $L_{1}(X)$ and τ its linear modulus [2]. In [9] (see also Akcoglu and Sucheston [1]) the author proved that if the adjoint of τ has a strictly positive subinvariant function in $L_{\infty}(X)$ then the following two conditions are quivalent: (i) " T^{n} converges weakly; (ii) $\frac{1}{n} \sum_{i=1}^{n} T^{k_{i}}$ converges strongly for any strictly increasing sequence k_{1}, k_{2}, \cdots of nonnegative integers. In the present paper we shall prove that if T is positive and satisfies $T f=f$ whenever $0 \leqq f \in L_{1}(X)$ and $T f \geqq f$, then the equivalence of (i) and (ii) still holds. Applying this result, we obtain that if, in addition, $\sup _{n}\left\|T^{n}\right\|_{1}<\infty$ and if $T^{n} f$ converges weakly for any $f \in L_{1}(X)$ with $\int f d m=0$, then $\frac{1}{n} \sum_{i=1}^{n} T^{k_{i}} f$ converges strongly for any $f \in$ $L_{1}(X)$ with $\int f d m=0$ and for any strictly increasing sequence k_{1}, k_{2}, \cdots of nonnegative integers.

§ 2. Mean ergodic theorems.

In this section we shall assume that T is a positive linear operator on $L_{1}(X) . \quad T^{*}$ denotes the adjoint of T. Thus T^{*} acts on $L_{\infty}(X)$, and $\int(T f) u d m$ $=\int f\left(T^{*} u\right) d m$ for all $f \in L_{1}(X)$ and all $u \in L_{\infty}(X)$. If $A \in \mathscr{M}$ then 1_{A} is the indicator function of A and $L_{p}(A)$ denotes the Banach space of all $L_{p}(X)$ functions that vanish a.e. on $X-A$. A set $A \in \mathscr{M}$ is called closed under T if $f \in L_{1}(A)$ implies $T f \in L_{1}(A)$.

The following proposition is stated with more generality than what is needed for applications in this paper. In particular, it extends a result of Lin [7, Theorem 1.1] (see also Krengel and Sucheston [5] and Lin [6]).

