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\S 1. Introduction.

The present note is concerned with the limiting behavior as $\epsilon\rightarrow 0_{+}$ of
solutions $u_{\epsilon}$ of the equation

(1.1) $(1-\epsilon A)u_{\epsilon}^{\prime}(t)-Bu_{\epsilon}(t)=f_{\epsilon}(t)$ .
$A$ and $B$ are maximal dissipative linear operators in a complex Hilbert space $\cdot$

$H,$ $A$ is self-adjoint and $D(A)\subset D(B)$ . We wish to show that if $f_{\text{\’{e}}}\rightarrow f$ and
$u_{\epsilon}(O)\rightarrow x$ in a suitable fashion, then $u_{\epsilon}$ converges to the solution $u$ of

(1.2) $u^{\prime}(t)-Bu(t)=f(t)$ , $u(O)=x$ ,

that $u_{\epsilon}^{\prime}\rightarrow u^{\prime}$ and that the rate of convergence is $O(\sqrt{\epsilon})$ . The conditions im-
posed on $A$ and $B$ imply that $B$ is relatively bounded with respect to A $s\mathfrak{a}$.
that (1.1) is a singular perturbation of (1.2). Our results aPply in particular
when (1.2) is a partial differential equation of parabolic or of Schroedinger
type.

Equation (1.1) arises in a variety of physical problems including fluid
flow through a fissured rock [1], shear in second order fluids $[3, 10]$ , soil
mechanics [9], thermodynamics [2] and many others [4], and (1.2) is often
used as an aPproximating model when the Physical constant $\epsilon$ is small.
Convergence of solutions of (1.1) to solutions of (1.2) was considered by T. W.
Ting [11] in the following special situation: $H=L^{2}(\Omega)$ where $\Omega$ is a bounded
open set in $R^{n}$ with smooth boundary and $A$ and $B$ are, respectively, the
realizations in $L^{2}(\Omega)$ of the partial differential operators

$\mathcal{A}=\sum_{i,j=1}^{n}\frac{\partial}{\partial x_{i}}(a_{ij}\frac{\partial}{\partial x_{j}})-a(x)$ , $a(x)\geqq 0$ ,

$\mathcal{B}=\sum_{i.j=1}^{n}\frac{\partial}{\partial x_{t}}(b_{ij}\frac{\partial}{\partial x_{j}})-b(x)$ , $b(x)\geqq 0$ ,

under Dirichlet boundary conditions. The matrices $(a_{ij})$ and $(b_{ij})$ were assumed


