J. Math. Soc. Japan Vol. 25, No. 1, 1973

Approximation of solutions of differential equations in Hilbert space

By John LAGNESE

(Received April 6, 1972)

§1. Introduction.

The present note is concerned with the limiting behavior as $\varepsilon \rightarrow 0_{+}$ of solutions u_{ε} of the equation

(1.1)
$$(1 - \varepsilon A)u'_{\varepsilon}(t) - Bu_{\varepsilon}(t) = f_{\varepsilon}(t) .$$

A and B are maximal dissipative linear operators in a complex Hilbert space H, A is self-adjoint and $D(A) \subset D(B)$. We wish to show that if $f_{\varepsilon} \rightarrow f$ and $u_{\varepsilon}(0) \rightarrow x$ in a suitable fashion, then u_{ε} converges to the solution u of

(1.2)
$$u'(t) - Bu(t) = f(t), \quad u(0) = x,$$

that $u'_{\varepsilon} \to u'$ and that the rate of convergence is $O(\sqrt{\varepsilon})$. The conditions imposed on A and B imply that B is relatively bounded with respect to A so that (1.1) is a singular perturbation of (1.2). Our results apply in particular when (1.2) is a partial differential equation of parabolic or of Schroedinger type.

Equation (1.1) arises in a variety of physical problems including fluid flow through a fissured rock [1], shear in second order fluids [3, 10], soil mechanics [9], thermodynamics [2] and many others [4], and (1.2) is often used as an approximating model when the physical constant ε is small. Convergence of solutions of (1.1) to solutions of (1.2) was considered by T. W. Ting [11] in the following special situation : $H = L^2(\Omega)$ where Ω is a bounded open set in \mathbb{R}^n with smooth boundary and A and B are, respectively, the realizations in $L^2(\Omega)$ of the partial differential operators

$$\mathcal{A} = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(a_{ij} \frac{\partial}{\partial x_{j}} \right) - a(x), \qquad a(x) \ge 0,$$
$$\mathcal{B} = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(b_{ij} \frac{\partial}{\partial x_{j}} \right) - b(x), \qquad b(x) \ge 0,$$

under Dirichlet boundary conditions. The matrices (a_{ij}) and (b_{ij}) were assumed