Approximation of solutions of differential equations in Hilbert space

By John Lagnese

(Received April 6, 1972)

§ 1. Introduction.

The present note is concerned with the limiting behavior as $\varepsilon \rightarrow 0_{+}$of solutions u_{ε} of the equation

$$
\begin{equation*}
(1-\varepsilon A) u_{\varepsilon}^{\prime}(t)-B u_{\varepsilon}(t)=f_{\varepsilon}(t) \tag{1.1}
\end{equation*}
$$

A and B are maximal dissipative linear operators in a complex Hilbert space H, A is self-adjoint and $D(A) \subset D(B)$. We wish to show that if $f_{\varepsilon} \rightarrow f$ and $u_{\varepsilon}(0) \rightarrow x$ in a suitable fashion, then u_{ε} converges to the solution u of

$$
\begin{equation*}
u^{\prime}(t)-B u(t)=f(t), \quad u(0)=x \tag{1.2}
\end{equation*}
$$

that $u_{\varepsilon}^{\prime} \rightarrow u^{\prime}$ and that the rate of convergence is $O(\sqrt{\varepsilon})$. The conditions imposed on A and B imply that B is relatively bounded with respect to A so that (1.1) is a singular perturbation of (1.2). Our results apply in particular when (1.2) is a partial differential equation of parabolic or of Schroedinger type.

Equation (1.1) arises in a variety of physical problems including fluid flow through a fissured rock [1], shear in second order fluids [3, 10], soil. mechanics [9], thermodynamics [2] and many others [4], and (1.2) is often. used as an approximating model when the physical constant ε is small. Convergence of solutions of (1.1) to solutions of (1.2) was considered by T. W. Ting [11] in the following special situation : $H=L^{2}(\Omega)$ where Ω is a bounded open set in \boldsymbol{R}^{n} with smooth boundary and A and B are, respectively, the realizations in $L^{2}(\Omega)$ of the partial differential operators

$$
\begin{aligned}
\mathcal{A} & =\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j} \frac{\partial}{\partial x_{j}}\right)-a(x), \quad a(x) \geqq 0, \\
\mathcal{B} & =\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(b_{i j} \frac{\partial}{\partial x_{j}}\right)-b(x), \quad b(x) \geqq 0
\end{aligned}
$$

under Dirichlet boundary conditions. The matrices $\left(a_{i j}\right)$ and $\left(b_{i j}\right)$ were assumed:

