Localization of CW-complexes and its applications

By Mamoru MIMURA, Goro NISHIDA and Hirosi TODA

(Received Jan. 28, 1971)

Introduction

In the algebraic topology, in particular in the homotopy theory, abelian groups are often treated by being devided into their "p-primary component" for various primes p.

In the homotopy category of 1-connected CW-complexes, an isomorphism means a homotopy equivalence, which is of course an equivalence relation. As is well known, a homotopy equivalence is such a map that it induces an isomorphism on the integral homology group.

There might be three ways to generalize it in the mod p sense.

First one is to define a p-equivalence so that it induces an isomorphism on the homology group with Z_p -coefficient. A p-equivalence, however, is not in general an equivalence relation even in the category of 1-connected finite CW-complexes. In fact, in [11] is shown an example, for which symmetricity does not hold. To make it an equivalence relation, we have to work in the category of p-universal spaces [12].

Next one is to define that X and Y are of same p-type, if there exist a space Z and p-equivalences $f: X \rightarrow Z$ and $g: Y \rightarrow Z$. Then it is easy to see that a relation being of same p-type is an equivalence relation.

The last one is to consider a homotopy equivalence for "localized spaces $X_{(p)}$ " of X at p. It is a functor of 1-connected CW-complexes into itself such that if $f: X \to Y$ is a p-equivalence then the localization at p $f_{(p)}: X_{(p)} \to Y_{(p)}$ is a homotopy equivalence. The localization is studied by Adams [2], Anderson [3], Bousfield-Kan and others. Our construction is a generalization of Adams' telescope [2], and has the following advantage:

THEOREM 2.5. If X is a 1-connected CW-complex of finite type, then $H_*(X_{(p)}) \cong H_*(X) \otimes Q_p$ and $\pi_*(X_{(p)}) \cong \pi_*(X) \otimes Q_p$, where Q_p denotes the ring of those fractions, whose denominators, in the lowest form, are prime to p.

Also we show

COROLLARY 4.3. X is homotopy equivalent to $\prod_{X_{(0)}} X_{(p)}$ the pull back of $X_{(p)}$ over $X_{(0)}$.

So we can study the topological properties of X for each prime p